
www.manaraa.com

Parallel Text Classification Applied to Large

Scale Arabic Text

 التوازي على الواسع قـاالنط ذات العربية النصوص تصنيف

by

Bushra Omar Alqarout

Supervised by

Dr. Rebhi S. Baraka

Associate Professor of Computer Science

A thesis submitted in partial fulfilment of

the requirements for the degree of

Master of Information Technology

October/2071 – Muharram/1439

 زةــغبـة ــلاميــــــة الإســـــــــامعـالج

 البحث العلمي والدراسات العليا عمادة

 ـوجيــا المعلــومـــاتــتكنولـة ــــليـــك

 مــــاجستير تكنولــوجيــا المعلـومــات

jhgj

 تكنولــوجيــا المعلـومــاتماجستير

The Islamic University of Gaza

Deanship of Research and Postgraduate

Faculty of Information Technology

Master of Information Technology

www.manaraa.com

I

 رارــــــــــــــإق

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Parallel Text Classification Applied to Large Scale Arabic Text

 التوازي على الواسع قـاالنط ذات العربية النصوص تصنيف

ثناء ما تمت الإشارة إليه حيثما ورد، وإن أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باست

هذه الرسالة ككل أو أي جزء منها لم يقدم من قبل لنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة تعليمية أو

 بحثية أخرى.

DECLARATION

The work provided in this thesis, unless otherwise referenced, is the

researcher's own work, and has not been submitted elsewhere for any

other degree or qualification

Student's name: Bushra O. Alqarout اسم الطالب بشرى عمر القـاروط:

Signature: :التوقيع
Date: التاريخ:

www.manaraa.com

www.manaraa.com

III

Abstract

Arabic text classification is becoming the focus of research and study for many

researchers interested in Arabic text mining field especially with the rapid grow of

Arabic content on the web. In this research, Naïve Bayes (NB) and Logistic Regression

(LR) are used for Arabic text classification in parallel. When these algorithms are used

for classification in a sequential manner, they have high cost and low performance.

Naïve Bayes cost a lot of computations and time when it is applied on large scale

datasets in size and feature dimensionality. On the other hand, logistic regression has

iterative computations which cost heavy time and memory. Also, both algorithms do

not give satisfying accuracy and efficiency rates especially with large Arabic dataset

taking into account that Arabic language has complex morphology adding

complexities to the computing cost. Therefore, in order to overcome the above

limitations, these algorithms must be redesigned and implemented in parallel.

In this research, we design and implement parallelized Naïve Bayes and Logistic

Regression algorithms for large-scale Arabic text classification. Large-scale Arabic

text corpuses are collected and created. This is followed by performing the proper text

preprocessing tasks to present the text in appropriate representation for classification

in two phases: sequential text preprocessing and term weighting with TF-IDF in

parallel. The parallelized NB and LR algorithms are designed based on MapReduce

model and executed using Apache Spark in-memory for big data processing. Various

experiments are conducted on a standalone machine and on a computer clusters of 2,

4, 8, and 16 nodes. The results of these experiments are collected and analysed.

We found that applying stemming approach reduced dataset documents’ sizes

and affects the classification accuracy where root stemming gets more accurate results

than light (light1) stemming. For fast results, NB is suitable and returns high accuracy

rates around 99% for large-scale documents with high dimensionality. LR also gives

accurate results except it takes longer time than NB. It gives 93% accuracy for Al-

Bokhary corpus compared to NB which gives 89% accuracy for the same corpus.

Keywords: Text Classification, Apache Spark, Naïve Bayes, Logistic Regression,

MapReduce.

www.manaraa.com

IV

 الملخص

 المهتمين فيو العربي محور البحث والدراسة لكثير من الباحثين أصبح تصنيف النص
. في المحتوى العربي السريع على شبكة الإنترنتلسرعة نمو ةالعربيوص النص تنقيب فيالمجال

 لتصنيف النص Logistic Regressionو Naïve Bayesخوارزميات التصنيف ستخدم ن هذا البحث
ف الكثير تصنيف بطريقة متتابعة تكللتخدم لعندما تس انالخوارزميتاتان . هالعربي على التوازي

بيانات ال كبيرة من عندما يتم تطبيقها على مجموعاتوالمساحة خصوصا من الحسابات والوقت
لبيانات ا كافية لتصنيف دقة وكفاءةا لا توفران كما أنهم .والخصائصعلى نطاق واسع في الحجم

روري مركبة. هذه القضايا تجعل من الض طبيعة مناللغة العربية ميز بهالما تتالعربية الكبيرة
 .على التوازي انالخوارزميت اتانتنفيذ هتصميم و

 Logisticو Naïve Bayesخوارزميات التصنيف بتطوير وتنفيذ قمنافي هذا البحث،
Regression نص ذا الحيث تم جمع ه. واسعالنطاق ال ذولتصنيف النص العربي على التوازي

 ريةالتحضي أداء المهام ثم، من أحاديث البخاري وصو إنشاء نص الكبير من المكتبة الشاملة
نص على مرحلتين: معالجة ال وتم ذلك المناسب للتصنيف الشكلتجهيز النص في لالمناسبة

تطبق التي Apache Sparkمكتبة باستخدام TF-IDFوتمثيله بشكل مسبقا باستخدام برنامج جافا
حسب نموذج تم تصميم خوارزميات التصنيف لتعمل على التوازي .MapReduceنهج م

MapReduce باستخدام وطبقتApache Spark ذتم تنفيفي معالجة البيانات الكبيرة. المختص
 مجموعة من اجهزة الحاسوبوعلى لتعمل على التوالي مستقل حاسوب على جهاز متعددةتجارب

جمع وتحليل نتائج هذه التجارب. جهاز لتعمل على التوازي حيث تم 61و، 8، 4، 2 تتكون من
ا وتأثيره الملفاتيقلل من حجم المختلفة (stemming approaches) ق طرق التجذيروجدنا أن تطبي

 خوارزمية .light1 stemmer نتائج أكثر دقة من أرجع root stemmerأن إذ على دقة التصنيف
Naïve Bayes تقريبا %99حيث وصلت دقة النتائج الى سريعاللتصنيف ل يبأداء عال تعمل .

مع %99حيث وصلت دقتها الى نتائج أكثر دقة أرجعت Logistic Regression خوارزمية
مع نفس النصوص ولكن Naïve Bayes 89%ديث البخاري في حين لم تتعد دقة انصوص أح

 .Logistic Regressionبسرعة أعلى من سرعة

، Naïve Bayes، خوارزمية التصنيف Apache Sparkتصنيف النصوص، مكتبة فتاحية:الكلمات الم

 .MapReduce نموذج البرمجة المتوازية ، Logistic Regressionخوارزمية التصنيف

www.manaraa.com

V

 بسم الله الرحمن الرحيم

 لى:اقال تع

ب ﴿ لْم وَقلُ رَّ دْن ي ع ﴾ا ز

 صدق الله العظيم

] 111 ه:طــ [

www.manaraa.com

VI

Dedication

I dedicate this work and give special thanks to my dear husband Mohammed J. Abu

Mere for being there by my side all the way through the work of this thesis.

I also have huge gratitude and appreciation to my loving parents, Omar and Sahar

Alqarout whose words of encouragement and push for persistence ring in my ears.

Moreover, I thank my brothers who have always been by my side.

www.manaraa.com

VII

Acknowledgements

Special thanks to Dr. Rebhi S. Baraka, my supervisor, for his efforts of reflecting,

reading, encouraging, and most of all patience throughout the entire research process.

I would like to thank Dr. Alaa M. El-Halees and Dr. Iyad M. Alagha for their feedback

and comments.

Also, I would like to acknowledge and thank the IT faculty staff members, Mr. Arafat

Abu Jrai and Mr. Mohammed Al-Shorafa for facilitating the lab to conduct my

experiments.

www.manaraa.com

VIII

Table of Contents

Abstract……………………………………………………………………… III

 IV ..………………………………………………………………………الملخص

Dedication…………………………………………………………………….VI

Acknowledgements………..………………………………………………...VII

Table of Contents…………………………………………………………..VIII

List of Appendices……………………………………………………………..I

List of Tables……………………………………………………………….XII

List of Figures………………………………………………..……………XII

List of Abbreviations………………………………………………….………I

Chapter 1: Introduction……………………………………………………. 2

1.1 Background…………………………………………………………….. 2

1.2 Problem Statement……………………………………………………... 4

1.3 Objectives…………………………………………………………….... 4

1.3.1 Main Objective…………………………………………...………4

1.3.2 Specific Objectives…………………………………………...…..4

1.4 Scope and Limitations……………………...……………………………5

1.5 Importance of the Research……………..……………………………….5

1.6 Research Methodology………………………………………………….6

1.6.1 Research and Survey……………………………………………6

1.6.2 Arabic Corpus Collection and Preparation……………………..6

1.6.3 Arabic Text Preprocessing……………………………………...6

1.6.4 Setup the Parallel Environment…………………………………7

1.6.5 Design and Implementation of the Classification Algorithms…..7

1.6.6 Experimentation…………………………………………………7

www.manaraa.com

IX

1.6.7 Evaluation …………………………………………..……………8

1.7 Thesis Structure………………………………………………..…………8

Chapter 2: Theoretical and Technical Foundation……………..…………10

2.1 Arabic Language………………………………………………………...10

2.2 Text Classification Algorithms………………………………………….12

2.2.1 Naïve Bayes………………………………………………..……13

2.2.2 Logistic Regression with L-BFGS………………………….…..14

2.3 Map-Reduce Programming Model……………………………………...17

2.4 Apache Spark……………………..……………………………………..19

 2.4.1 Spark Programming Model………………………………….….19

 2.4.2 Spark Memory Management…………………………………...20

 2.5 Python Programming Language………………………………………..22

 2.6 Performance and Classification Evaluation……………………………23

 2.6.1 Accuracy……………………………………………………….23

 2.6.2 Precision……………………………………………………….23

 2.6.3 Recall………….……….…….……….……….…..….……….24

 2.6.4 F-measure……….……….……….……….……….……….....24

 2.6.5 Speedup………….….……….……….……….……….…...….24

 2.6.6 Parallel Efficiency……….……….……….……….……….…24

 2.6.7 Scalability……….……….……….……….……….………….24

 2.7 Summary……….……….……….……….……….……….………….25

Chapter 3: Related Work……….……….……….………..…….………..27

 3.1 Sequential Text Classification Algorithms……….……….………….27

 3.2 Text Preprocessing Techniques affecting Classification Accuracy….28

 3.3 Text Classification with Parallel Computing……….……….……….30

www.manaraa.com

X

 3.4 Summary………………..…………..…………..…………..……….…..32

Chapter 4: Parallel Classification of Arabic Text Using NB and LR……..34

 4.1 The Proposed Parallel Classification Approach…………..……………..34

 4.2 Creation and Collection of Arabic Text Corpus…………..……………..37

 4.2.1 Shamela Corpus…………..…………..…………..………….…..37

 4.2.2 Al-Bokhary Corpus…………..…………..…………..………….37

 4.3 Text Preprocessing and Term Weighting…………..…………..…..……38

 4.3.1 Arabic Text Preprocessing…………..…………..…………..…..38

 4.3.2 Term Weighting…………..…………..…………..……………..40

 4.4 Training Stage…………..…………..…………..…………..…………...41

 4.4.1 Naïve Bayes (NB) ...…………..…………..…………..…………41

 4.4.2 Logistic Regression (LR) …………..…………..……………….43

 4.5 Testing Stage…………..…………..…………..…………..…………….44

 4.5.1 NB…………..…………..…………..…………..…………….…44

 4.5.2 LR…………..…………..…………..…………..……………….45

 4.6 Summary…………..…………..…………..…………..………………...45

Chapter 5: Experimental Results and Approach Evaluation…………..…48

 5.1 Corpus…………..…………..…………..…………..…………………...48

 5.1.1 Shamela Corpus………..…………..…………..…………….. 48

 5.1.2 Al-Bokhary Corpus………..…………..…………..………….50

 5.2 Experimental Environment………..…………..…………..……………50

 5.3 The Parallel NB and LR Classifiers Implementation in Apache Spark...52

 5.4 Experimental Results and Discussion………..…………..……………..53

 5.4.1 Performance Evaluation …………..…………..………… ...….53

 5.4.2 The Proposed Parallel Classification Evaluation…………..…61

www.manaraa.com

XI

 5.4.3 NB vs LR…………..…………..…………..………………..…66

 5.5 Summary………..…………..…………..…………………..…………...67

Chapter 6: Conclusion and Future Work………..…………..……..….…..69

 6.1 Conclusion………..…………..…………..…………………..……….…69

 6.2 Future Work………..…………..…………..……………………………70

References…………..…………..…………..…………..…………..……...…72

Appendices…………..…………..…………..…………..…………..……..…0

www.manaraa.com

XII

List of Tables

Table (2.1): Various Arabic Vowels represented on Letter ta'a (ط) 11

Table (5.1): Shamela Corpus Count Documents per Category 49

Table (5.2): Al-Bokhary Corpus Categories ... 50

Table (5.3): Spark Cluster Configuration Settings ... 51

Table (4.4): Execution Time (min) of Parallel NB Classifier on Spark Cluster

Nodes using 70% - 30% Data Split ... 55

Table (5.5): Execution Time (min) of Parallel LR Classifier on Spark Cluster

Nodes using 70% - 30% Data Split ... 56

Table (5.6): Speedup of Parallel NB Classifier on Spark Cluster Nodes 58

Table (5.7): Speedup of Parallel LR Classifier on Spark Cluster Nodes 58

Table (5.8): Parallel Efficiency of Parallel NB Classifier on Apache Spark

Cluster .. 60

Table (5.9): Parallel Efficiency of Parallel LR Classifier on Apache Spark

Cluster .. 60

Table (5.10): Parallel NB Classification Metrics on Shamela, Shamela-More

and Al-Bokhary Corpuses .. 63

Table (5.11): Parallel LR Classification Metrics on Shamela, Shamela-More and

Al-Bokhary Corpuses .. 65

Table (B.1): NB: 70-30 sampling - 900 feature Shamela-More light1 stemming

on a standalone node .. B-1

Table (B.2): NB: 70-30 sampling - 900 feature Shamela-More root stemming

on a standalone node .. B-1

Table (B.3): NB: 70-30 sampling - 900 feature Shamela light1 stemming on a

standalone node .. B-1

Table (B.4): NB: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming

on a 2 nodes cluster .. B-2

www.manaraa.com

XIII

Table (B.5): NB: 70-30 sampling - 10,000 feature Al-Bokhary without

stemming on a 2 nodes cluster ... B-2

Table (B.6): NB: 70-30 sampling - 900 feature Shamela-More light1 stemming

on a 2 nodes cluster .. B-2

Table (B.7): NB: 70-30 sampling - 900 feature Shamela-More root stemming

on a 4 nodes cluster .. B-3

Table (B.8): NB: 70-30 sampling - 900 feature Shamela-More light1 stemming

on a 4 nodes cluster .. B-3

Table (B.9): NB: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming

on a 4 nodes cluster .. B-3

Table (B.10): NB: 70-30 sampling - 900 feature Shamela root stemming on an

8 nodes cluster ... B-3

Table (B.11): NB: 70-30 sampling - 900 feature Shamela light1 stemming on an

8 nodes cluster ... B-4

Table (B.12): NB: 70-30 sampling - 900 feature Al-Bokhary root stemming on

an 8 nodes cluster ... B-4

Table (B.13): NB: 70-30 sampling - 900 feature Shamela-More without

stemming on a 16 nodes cluster ... B-4

Table (B.14): NB: 70-30 sampling - 900 feature Shamela without stemming on

a 16 nodes cluster ... B-4

Table (B.15): NB: 70-30 sampling - 900 feature Al-Bokhary without stemming

on a 16 nodes cluster .. B-5

Table (B.16): NB: 70-30 sampling - 900 feature Shamela-More light1 stemming

on a 16 nodes cluster .. B-5

Table (B.17): LR: 70-30 sampling - 900 feature Shamela root stemming on a

standalone node .. B-6

Table (B.18): LR: 70-30 sampling - 900 feature Shamela-More root stemming

on a standalone node .. B-6

www.manaraa.com

XIV

Table (B.19): LR: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming

on a standalone node .. B-6

Table (B.20): LR: 70-30 sampling - 10,000 feature Al-Bokhary without

stemming on a 2 nodes cluster ... B-6

Table (B.21): LR: 70-30 sampling - 900 feature Shamela root stemming on a 2

nodes cluster .. B-7

Table (B.22): LR: 70-30 sampling - 900 feature Shamela light1 stemming on a

2 nodes cluster ... B-7

Table (B.23): LR: 70-30 sampling - 900 feature Shamela-More without

stemming on a 4 nodes cluster ... B-7

Table (B.24): LR: 70-30 sampling - 900 feature Shamela without stemming on

a 4 nodes cluster ... B-7

Table (B.25): LR: 70-30 sampling - 10,000 feature Al-Bokhary without

stemming on a 4 nodes cluster ... B-7

Table (B.26): LR: 70-30 sampling - 900 feature Shamela root stemming on an

8 nodes cluster ... B-8

Table (B.27): LR: 70-30 sampling - 900 feature Shamela light1 stemming on an

8 nodes cluster ... B-8

Table (B.28): LR: 70-30 sampling - 10,000 feature Al-Bokhary root stemming

on an 8 nodes cluster .. B-8

Table (B.29): LR: 70-30 sampling - 900 feature Shamela-More without

stemming on a 16 nodes cluster ... B-8

Table (B.30): LR: 70-30 sampling - 900 feature Shamela without stemming on

a 16 nodes cluster ... B-9

Table (B.31): LR: 70-30 sampling - 10,000 feature Al-Bokhary without

stemming on a 16 nodes cluster ... B-9

www.manaraa.com

I

List of Figures

Figure (2.1): General Text Classification Steps ... 13

Figure (2.2): Multinomial LR Steps (Polamuri, 2017) ... 15

Figure (2. 3): MapReduce Execution Workflow (Dean & Ghemawat, 2008) 18

Figure (2.4): Spark Programming Model ... 19

Figure (2.5): Apache Spark Unified Memory Model ... 21

Figure (4.1): The Proposed Text Classification Approach Workflow 35

Figure (4.2): Classification Process on Apache Spark ... 36

Figure (4.3): Sahih Al-Bokhary Front Cover ... 38

Figure (4.4): First Step in Text Pre-processing in a Sequential Manner 39

Figure (4.5): Term Weighting Steps in the Proposed Parallel Approach where n is the

number of categories in the corpus .. 40

Figure (4.6): Training Naive Bayes Classifier Data Flow on Apache Spark 42

Figure (4.7): Training Logistic Regression Classifier data flow on Apache Spark .. 43

Figure (4.8): Testing Naive Bayes Classifier Data Flow on Apache Spark 45

Figure (5.1): Stemming Effectiveness on Shamela Corpus 49

Figure (5.2): Execution Time of Parallel NB Classifier on Spark Cluster Nodes 54

Figure (5.3): Execution Time of Parallel LR Classifier on Spark Cluster Nodes 55

Figure (5.4): Speedup of Parallel NB Classifier on Spark Cluster Nodes 57

Figure (5.5): Speedup of Parallel LR Classifier on Spark Cluster Nodes 57

Figure (5.6): Parallel Efficiency of Parallel NB Classifier on Spark Cluster 59

Figure (5.7): Parallel Efficiency of Parallel LR Classifier on Spark Cluster 59

Figure (5.8): NB Classification Metrics using dataRDD for Shamela-More, Shamela,

and Al-Bokhary Corpuses .. 62

file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267404
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267405
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267406
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267408
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267409
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267410
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267411
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267412
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267412
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267413
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267414
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267415
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267417
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267418
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267420
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267419
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267421
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267422
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267423
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267423

www.manaraa.com

II

Figure (5.9): NB Classification Metrics using testRDD for Shamela-More, Shamel

and Al-Bokhary Corpuses .. 63

Figure (5.10): LR Classification Metrics using dataRDD for Shamela-More, Shamela,

and Al-Bokhary Corpuses .. 65

Figure (5.11): LR Classification Metrics using testRDD for Shamela-More, Shamela,

and Al-Bokhary Corpuses .. 66

file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267424
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267424
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267425
file:///D:/FinalThesis26_9_2017edit.docx%23_Toc494267425

www.manaraa.com

I

List of Appendices

Appendix A: Source Code Implementation……………………………….A-1

 A.1 Arabic Text Preprocessing Java Code…………………………………A-1

 A.2 Hadith Matan Extraction Java Code…………………………………...A-5

 A.3 Python Spark (pySpark) Application Code….. ………………………A-7

 A.4 (pySpark) Multiclass Evaluation Code………………………………A-10

 A.5 Python Source for Merging Files…………………………………….A-13

Appendix B: Experimental Results………………………...………….….B-1

 B.1 Naïve Bayes………………………….………………………………...B-1

 B.2 Logistic Regression…………………………………….……………...B-6

www.manaraa.com

I

List of Abbreviations

API Application Programming Interface

FN False Negative

FP False Positive

IDF Inverse Document Frequency

JDK Java Development Kit

LAN Local Area Network

L-BFGS Limited memory - Broyden Fletcher Goldfarb Shanno

LR Logistic Regression

MLlib Machine Learning library

NB Naïve Bayes

RDD Resilient Distributed Dataset

TC Text Classification

TF-IDF Term Frequency-Inverse Document Frequency

TN True Negative

TP True Positive

 `

www.manaraa.com

Chapter 1

Introduction

www.manaraa.com

2

Chapter 1

Introduction

Text classification plays an important role in organizing and ordering various

types and sizes of data. Data is available in different forms like text, images, video,

sensor produced and social media and in different languages. In this research, we are

investigating text classification of Arabic text using parallelized algorithms and

observing its behaviour. Through this chapter, we describe the workflow of this

research. We start with a background of text classification, Arabic, techniques and

tools for performing text classification. Then we state the research problem specify the

research objectives, determine the scope and limitations, identify the importance of the

research, define the methodology to be followed to achieve the research objectives,

and finally we present the structure of the thesis.

1.1 Background

Due to continuous growth of Arabic text content on the web, Arabic text mining

has become the focus of research and study for many researchers interested in Arabic

text mining especially on Arabic text classification (Hmeidi, Al-shalabi, & Al-

Ayyoub, 2015).

Automatic Text Classification involves assigning a text document to a set of

predefined classes automatically using a machine learning technique. The

classification is usually based on specific words or features existing in the text

document. Since the classes are pre-defined, it is a supervised machine-learning text

classification.

Arabic language is known of its rich vocabulary and complex morphology.

Therefore, Arabic text pre-processing and classification take a lot of computational

time to produce the classifier model and applying it, especially, when large text is

encountered.

There are different algorithms used for text classification such as Naïve Bayes

(Thabtah, Eljinini, Zamzeer, & Hadi, 2009), K-Nearest Neighbour (K-NN) (Alhutaish

& Omar, 2015), Support Vector Machines (SVM) (Alsaleem, 2011), Decision tree

www.manaraa.com

3

(Bahassine, Kissi, & Madani, 2014). Most of these algorithms are used for text

classification in a sequential manner which need much time on computation and do

not result in high accuracy and efficiency especially with large datasets. Therefore,

parallel implementation of these algorithms would enhance their accuracy and

efficiency using models such as Map-Reduce and tools such as Hadoop (Hadoop,

2014) and Spark (Spark, 2014).

One of the most used classifiers on Arabic text (Mamoun & Ahmed, 2014) is

Naïve Bayes (NB). It is a simple probabilistic classifier based on applying Bayes

theorem with strong independence assumptions between the features. It works very

well on numerical and textual data and requires a small volume of training data for

classification but it has difficulty with noise or irrelevant features in training data.

In 2015, Al-Tahrawi find out Arabic text classification can be preferred using

Logistic Regression (LR). It is a statistical method used to analyse a dataset with one

or more independent features to determine a class. It estimates the probability of each

class directly from the training data by minimizing errors.

Contemporary parallel techniques and tools could be used to improve the

accuracy and the efficiency of these classification methods. One such tool is Apache

Spark which is a fast and general-purpose cluster computing system for large-scale

data processing in parallel. It provides high-level APIs in Java, Scala, Python and R,

and an optimized engine that supports general execution graphs. It also supports a rich

set of higher-level tools including Spark SQL for SQL and structured data

processing, MLlib for machine learning, GraphX for graph processing, and

Spark Streaming.

In this research, we develop and implement a text classification approach for

Arabic language in parallel manner. We conduct the research with two corpuses: a

large-scale Arabic text corpus and Arabic text corpus with large number of categories

and small number of instances. Each corpus is exposed to the proper text preprocessing

tasks to represent the text in appropriate form for the classification. The Naïve Bayes

and Logistic Regression are the considered algorithms in this work and designed based

on MapReduce architecture. The proposed approach is implemented using Apache

Spark framework. We conduct different experiments on a single machine and on

www.manaraa.com

4

multiple computer clusters of 2, 4, 8, 16 nodes respectively for the evaluation of the

proposed classifiers efficiency and accuracy.

1.2 Problem Statement

Different text classification algorithms like Naïve Bayes and Logistic

Regression when applied to Arabic text take extra computational power and memory

space on training the data for building the model and applying it leading to less

efficiency and accuracy especially when the size of the dataset is large and text

documents has high dimensionality taking into consideration the morphological

complexity of the Arabic language.

The problem of this research is how to use parallelization with these algorithms

to improve their efficiency and to use most convenient text pre-processing methods to

enhance results accuracy for classifying large-scale Arabic text.

1.3 Objectives

1.3.1 Main Objective

To develop and implement a parallelized approach to classify large-scale Arabic

text using Naïve Bayes and Logistic Regression algorithms and to measure their

accuracy and efficiency compared to the sequential versions of these algorithms.

1.3.2 Specific Objectives

The research is conducted through achieving the following objectives:

1. Collect and create in house Arabic corpus for the approach.

2. Consider the proper text preprocessing techniques for each of its tasks:

stemming and term weighting schemes.

3. Select and setup the suitable parallel system environment considering factors

such as size of the cluster, suitability for realizing text classification algorithms

and ability to deal with large-scale data.

4. Redesign and implement each classification algorithm in a suitable way for the

selected parallel system.

www.manaraa.com

5

5. Conduct sufficient experiments and evaluate the performance and

classification results. Based on the results, compare the parallelized algorithms

to each other and to the sequential versions.

1.4 Scope and Limitations

This research considers parallelizing text classification algorithms: Naïve Bayes

and Logistic Regression for large-scale Arabic text to improve the level of efficiency

and accuracy. The work is conducted with the following scope and limitations:

1. We use free large data corpus of Arabic language and we use in house collected

corpus with a lot of numbers of classes with small number of samples.

2. The Arabic corpus contains text based on various Islamic domains such as

hadith, feqh, and history.

3. The proposed classification algorithms are Naïve Bayes which is the most

commonly used in Arabic text classification and Logistic Regression which is

the rarely used in Arabic text classification. They are parallelized and

compared with each other and with their sequential versions.

4. Implementation phase does not include text preprocessing. Text preprocessing

is accomplished separately prior to conducting the experiments.

5. We conduct the experiments on a single machine and on a multicomputer

clusters of 2, 4, 8 and 16 nodes to measure the efficiency and the accuracy of

the proposed approach.

6. The cluster is built using Apache Spark standalone cluster.

1.5 Importance of the Research

1. Determine suitable factors and methods to take into consideration with Naïve

Bayes and Logistic Regression algorithms for classifying Arabic text with best

results and performance.

2. Enhance the efficiency of the text classification algorithms when applied to

large-scale datasets or small datasets with large number of classes through

parallelism.

www.manaraa.com

6

3. The proposed parallel approach can be used with applications considering text

classification as a major task such as text summarization and question

answering systems.

4. The proposed parallel approach can play a major role in different domains such

as health and business.

1.6 Research Methodology

We follow the following methodology to achieve the research objectives:

1.6.1 Research and Survey

This includes reviewing the recent literature closely related to the research

problem and to the main research objective. The literature review covers three topics

including Sequential Text Classification Algorithms, Text Preprocessing Techniques

which affect Classification Accuracy and Text Classification with Parallel Computing.

The reviewed researches were analyzed and summeraized in Chapter 2. We formulate

the specific objectives to overcome the drawbacks and achieve the research main

objective, hence solving the research problem.

1.6.2 Arabic Corpus Collection and Preparation

We search for appropriate free large-scale Arabic text corpus for classification

and we create one on our own that has many classes with small number of samples to

satisfy the research needs as described in Section 4.2 and 5.1.

1.6.3 Arabic Text Preprocessing

We apply Arabic text pre-processing tasks on the corpus to optimize the text

quality and transform it into a suitable form for classification using appropriate

techniques and tools as described in Section 4.3. This phase includes:

 Tokenization: breaking text into words called tokens using the appropriate

Arabic tokenizer.

 Normalization: normalizing each token into its canonical form. In Arabic

there are few letters which are often misspelled and thus need

normalization and that include:

o The Hamzated forms of Alif (آ ,إ , أ) are normalized to bare Alif (ا).

www.manaraa.com

7

o The Alif-Maqsura (ى) is normalized to a Ya (ي).

o The Ta-Marbuta (ة) is normalized to a Ha (ه).

o Remove tatweel. For example: (حركــــات) to (حركات)

o Remove numbers and special characters

o Remove Excessive spaces, tashkeel, and punctuation marks

 Stop words removal: remove any token considered as a stop word and

does not bear content such as ,هما هي, هم, في .

 Stemming: use appropriate stemmer to derive the stem or root of each

token.

 Representation: applying the suitable term weighting scheme to enhance

text representation as feature vector.

 Feature Selection: apply the appropriate method to select group of features

to reduce the training time needed and have better results for the approach

construction like setting the number of features.

1.6.4 Setup the Parallel Environment

We setup the parallel environment as listed in Section 5.2 for the development

and the implementation of the approach using the required models, frameworks and

programming languages. MapReduce model is used as the parallel programming

model. Apache Spark is a well-known framework that is used to realize MapReduce.

1.6.5 Design and Implementation of the Classification Algorithms

We design the parallel model for each considered classification algorithm (Naïve

Bayes and Logistic Regression in Section 4.4 and 4.5) by choosing an appropriate

MapReduce partitioning and mapping technique with load balancing .

We implement each algorithm using Apache Spark and its MLlib library in client

mode that runs on Apache Spark standalone cluster.

1.6.6 Experimentation

We perform a set of experiments on the implemented approach using the pre-

processed Arabic text corpus and observe the results and performance.

www.manaraa.com

8

The experiments are described in detail at Section 5.3 where they run on a single

node and on clusters of 2, 4, 8, 16 nodes respectively. They include dividing the dataset

into two sets: one for training to build the classification model with the proposed

approach and the other for testing to evaluate the generated model.

1.6.7 Evaluation

We evaluate the proposed approach in each mode according to the performance

metrics such as time needed to train the model, speed up and scalability as measures

of efficiency and they discussed in Section 5.4.1. We also analyse the results according

to the classification measures such as accuracy, precicion, recall, and f-measure as

dicussed in Section 5.4.2. After that, we discuss the results, and find out all related

factors influencing the performance of the proposed approach.

1.7 Thesis Structure

The thesis is organized as follows: Chapter 2 covers the technical and theoretical

foundation of the research. Chapter 3 presents the review of related works. Chapter 4

presents and describes the proposed approach for Arabic parallel classification.

Chapter 5 discusses the experimental results and evaluation. Finally, Chapter 6

includes the conclusions and future work.

www.manaraa.com

Chapter 2

Theoretical and Technical

Foundation

www.manaraa.com

10

Chapter 2

Theoretical and Technical Foundation

Arabic language is known as the mother tongue of Arabs and many Muslims

around the world. Therefore, Arabic content on the web grows rapidly and hence

increases the need for studying different classification algorithms like Naive Bayes

and Logistic Regression for classifying Arabic text documents needed in many areas

and for various purposes. Through this chapter, we present concepts, algorithms,

models, tools and techniques used in this research. Starting with a conceptual overview

of Arabic language in Section 2.1, followed by describing text classification and

presents used classifiers in this research namely NB and LR in Section 2.2. We use

Apache Spark as a parallel programming model. In Section 2.3 described Apache

Spark in detail, how it manages memory, and its available libraries and APIs. Finally,

evaluating text classification is defined using the mentioned metrics in Section 2.5.

2.1 Arabic Language

Arabic language is the language of Quran and the native tongue of more than

200 million people across the world (Versteegh & Versteegh, 2014; Wahba, Taha, &

England, 2014). As with any language, it has its own grammar, spelling and

punctuation rules, its own slang and idioms, and its own pronunciation. The Arabic

alphabet consists of 28 letters, reading from right to left.

Arabic letters do not have a case distinction. Most letters connect with one

another using slight modifications to the basic alphabet forms to combine words.

Vowels on letters of Arabic word as resembled in Table 2.1, or the position of a word

in the sentence could affect the meaning of the word.

For example:

 .كتاب pronounced kotob, means the plural of book (noun) :كُتُب

 .pronounced katab, means write (verb) :كتَبَ

www.manaraa.com

11

Table (2.1): Various Arabic Vowels represented on Letter ta'a (ط)

 ط ط طَ ط طُ ط ط ط
Tanwin

Damma

Tanwin

Kasra

Tanwin

Fatha

Damma Kasra Fatha Sukun Shadda

Arabic language preprocessing in text mining research includes various tasks

such as normalization and stemming and these tasks considered difficult to maintain.

Ayedh, Tan, Alwesabi, and Rajeh (2016) are explained that considering the following

justifications:

- The rich nature and complex morphology of Arabic language in which a root

word can produce many words with different meanings.

- In Arabic, there are not only suffixes, which added at the end of the root, or

prefixes, which added at the beginning of the root, but also infixes that placed

between the letters of the root and sometimes it is hard to differentiate them

from the root. For example, adding alif (ا) to the root (عمل) to become (عـامل).

- There are Arabic words have various meanings and the proper meaning is

identified according to its presence in the paragraph or how the diacritical

marks set on the word letters.

- Since Arabic letters do not have capital or small shapes, it make recognizing

proper names, acronyms, and abbreviations challenging.

- Lack of available free Arabic datasets applicable for Arabic document

classification and large scale Arabic datasets in particular.

- Arabic language is rich with synonyms and broken plural forms that differ from

its initial form in singular. For instance, يَّة) بَة، صَدقَة، عَط (ه are synonyms that

mean gift. (قلُوُب) is a broken plural forms means hearts that differ from its

singular (قَلْب).

- There is words in Arabic language have many lexical classes (noun, verb, etc).

As (قلب) in (في قلب المجريات) means core, (عملية قلب مفتوح) means heart.

- Some words in Arabic language cannot derive its root because it came from

another language like program (برنامج) and internet (انترنت).

www.manaraa.com

12

Therefore, various algorithms are developed to apply one of the preprocessing

tasks such as light stemmer and root stemmer algorithms were developed for stemming

in which stemming. In addition, each algorithm has memory and time complexity that

should be taken into consideration besides the applied environments to preprocess the

Arabic language text properly for classification.

2.2 Text Classification Algorithms

Text classification (TC) is a subfield of text mining used to assign each document

to its related category or more. TC has a number general steps applied by different

algorithms as shown in Figure 2.1 and they are explained as follows:

A. Data Collection/Creation: Data corpus used for classification could be in

home collected or already collected by others.

B. Text Preprocessing: process corpus text using known text preprocessing tasks

to be in suitable form for classification like stemming, tokenization,

normalization, etc.

C. Feature Weighting and Selection: text will be represented as a bag-of-words

such as position of the word or its meaning would not affect on the

classification process and each word will be weighted and selected using

different methods like tf-idf (Term Frequency-Inverse Document Frequency),

Chi-Square, etc.

D. Data Splitting: usually data corpus split into a part for training the data using

any chosen algorithm to generate the classifier model, and into another part for

testing the generated model.

o D.1 Training: The first part of data is the input to the classification

algorithm to produce the classifier model.

o D.2 Testing: The second part of data is used to test the produced

classifier model that predicts the class of each input and then is

compared to its real class. At the end, it computes the error percentage

and other required performance measures like precision, and recall.

www.manaraa.com

13

Figure (2.1): General Text Classification Steps

Now, we talk about the used text classification algorithms in this research

namely Naïve Bayes and Logistic Regression.

2.2.1 Naïve Bayes

NB is a supervised machine-learning algorithm, which can be faster than

other classification algorithms. It is constructed based on Bayes theorem of probability

to predict the class of unknown data set and assume the independence between

features. For example, a patient diagnosed with flu if he is exposed to the following

symptoms (Mäkelä et al., 2000): fever, sore throat, cough, and headache. Even if these

features depend on each other or upon the existence of the other features, all of these

properties independently, contribute to the probability that the patient have a flu and

(A) Data
Collection/Creation

(B) Text
Preprocessing

(C) Feature
Weighting and

Selection

(D) Data Splitting

(D.1) Training

Train machine
learning algorithm

Classifier model
generated

(D.2) Testing

Predict document
category using the
generated classifier

model

Measure
Performance metrics

www.manaraa.com

14

that is why this algorithm is known as Naive. NB model is easy to build and

particularly useful for very large data sets. Along with simplicity, it also known

to outperform even highly sophisticated classification methods.

The classification model is established by applying Bayesian rule (Krishnaveni

& Sudha, 2016; McCallum & Nigam, 1998) as indicated by equations 2.1 and 2.2.

Posterior = (Likelihood * Prior) / Evidence (2.1)

P(c|x) = (P(x|c) * P(c)) / P(x) (2.2)

Where:

 P(c|x): the posterior probability of class c given predictor (x, attributes).

 P(c): the prior probability of class.

 P(x|c): the likelihood which is the probability of predictor given class.

 P(x): the evidence that is the prior probability of predictor.

Given approximations of these parameters calculated from the training

documents, classification can perform on test documents by calculating the posterior

probability of each class given the evidence of the test document, and selecting the

class with the highest probability.

2.2.2 Logistic Regression with L-BFGS

Logistic regression is commonly used with binary classification. It is a linear

method with the loss function calculated by the logistic loss:

L(w;x,y) = log(1 + exp(-ywTx)) (2.3)

In this research, we are targeting multinomial logistic regression that its’ model

m has K-1 binary logistic regression models regressed against the first class 0 for K

possible classes. Given a new data points, K−1 models will be run, and the class with

largest probability will be chosen as the predicted class. L-BFGS is an optimizer used

with LR.

- Multinomial Logistic Regression

Multinomial logistic regression generalizes logistic regression to multiclass

classification cases. It is used to predict the probabilities of the different possible

outcomes of a categorically distributed dependent variable, given a set of independent

www.manaraa.com

15

variables. It takes assumptions for granted that each independent variable has one

value for each class and it cannot anticipate the dependent variable of any class

accurately. But statistically it does not demand to be self-reliant contrasting NB.

However, it becomes challenging to discriminate the impact of several variables if this

is not the class.

Polamuri (2017) simplified the Multinomial LR computations cycle into simple

few steps as shows in Figure 2.2:

a. Inputs: All the features which exist in the dataset considered as the inputs (F) to

the multinomial LR. And their values must be numerical. For that reason, the

features are converted to numerical if they are not using proper methods.

b. Linear Model: The linear equation in the linear regression is also used as the linear

model equation.

Linear model = W*F + b (2.4)

where F is the set of inputs, and W is set of weights.

Assume F (numerical values) = [f1, f2, f3]. Where W includes the same

input number of weights W = [w1, w2, w3]. Then the linear model output will be

w1*x1, w2*x2, w3*x3. The weights w1, w2, w3 will be updated in the training

phase using parameters optimization also called loss function which is an iteration

process where the calculated weights for each observation used to calculate the

cost function and ends when the loss function value is less or considered

insignificant.

c. Logits: they are the outputs of the linear model that their scores are changing with

the calculated weights.

Input(F)

• f1

• f2

• f3

• ...

Logit()

•0.5

•1.5

•0.1

• ...

Softmax S(Y)

•0.2

•0.7

•0.1

• ...

Cross
Entropy

One Hot

Encoding

•0

•1

•0

• ...

Figure (2.2): Multinomial LR Steps (Polamuri, 2017)

www.manaraa.com

16

d. Softmax Function: it computes the probabilities for the given score that returns

the high probability value for the high scores and fewer probabilities for the

remaining scores. We can observe from Figure 2.2 that softmax probabilities are

0.2 and 0.7 for the given logits 0.5 and 1.5. We use the highest probability value

for predicting the target class for the given input features. Remembering that the

probabilities range of the softmax function are between 0 and 1 and the summation

of all its computed probabilities are equal to 1.

e. Cross Entropy: The last step in the multinomial LR that determines the similarity

distance between the probabilities calculated from the softmax function and the

target one-hot-encoding matrix. And the shortest distance will be for the true target

class.

f. One-Hot-Encoding: This function is used to show the target values or categorical

attributes into a binary representation. It is easy to create in which for every input

features (f1, f2, f3) the one-hot-encoding matrix is with the values of 0 and the 1

for the target class. The total number of values in the one-hot-encoding matrix and

the unique target classes are the same.

Next, we will talk about L-BFGS as an optimization parameter used with the

multinomial LR.

- Limited memory- Broyden Fletcher Goldfarb Shanno (L-BFGS)

Limited memory BFGS is well known optimization algorithm in machine

learning better version of the Broyden Fletcher Goldfarb Shanno (BFGS) algorithm

using a limited volume of computer memory. It is also called L- "the algorithm of

choice" for fitting log-linear (MaxEnt) models and conditional random fields with L2-

regularization.

It computes an approximation to the inverse Hessian matrix to steer its search

through variable space in which it stores only a few vectors that represent the

approximation implicitly. Due to its resulting linear memory requirement, it is

appropriate for optimization problems with a large number of variables.

www.manaraa.com

17

2.3 Map-Reduce Programming Model

MapReduce is a parallel and distributed programming model mainly associated

for processing large data sets that could be executed on a large cluster of machines.

Map and Reduce are the main procedures of MapReduce paradigm. map() processes

an input of key/value pair to perform some filtering or sorting and generate a new set

of intermediate key/value pairs, and reduce() joins all intermediate values associated

with the same intermediate key. The MapRecuce system orchestrates the processing

by partitioning the input data, scheduling the execution across a cluster machines,

for redundancy and fault tolerance, and managing the required inter-machine

communication. This tolerates unexperienced developers with parallel and distributed

systems to easily consume the resources of a large distributed system.

There is various examples that applies the MapReduce model like Distributed

Grep in which map() emits a line if it matches a supplied pattern, and reduce() is just

copies the supplied intermediate data to the output.

Dean and Ghemawat (2008) present an overview of the MapReduce workflow

as shown in Figure 2.3. The following actions occur when a MapReduce program runs:

1. The MapReduce program splits the input files into M pieces then starts up

many copies of the program on a cluster of machines.

2. One of the copies of the program is the master and the rest are workers. The

master picks idle workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding

input split, parses it into key/value pairs and passes each pair to the user-

defined Map function. The intermediate key/value pairs produced by the

Map function are buffered in memory.

4. From time to time, the buffered pairs are written to the local storage,

partitioned into R regions by the partitioning function. The locations of these

buffered pairs on the local storage are passed back to the master, who is

responsible for forwarding these locations to the reduce workers.

5. When a reduce worker is reported by the master about these locations, it uses

remote procedure calls to read the buffered data from the local storages of

the map workers. When a reduce worker has read all intermediate data, it

www.manaraa.com

18

sorts it by the intermediate keys so that all occurrences of the same key are

grouped. If the amount of intermediate data is too large to fit in memory, an

external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each

unique intermediate key encountered, it passes the key and the corresponding

set of intermediate values to the user's Reduce function. The output of the

Reduce function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes

up the user program.

After successful completion, the output of the MapReduce execution is available

in the output files. Typically, users do not need to combine these output files into one

file. They often pass them as input to another MapReduce call, or use them from

another distributed application that is able to deal with input that is partitioned into

multiple files.

Figure (2. 3): MapReduce Execution Workflow (Dean & Ghemawat, 2008)

www.manaraa.com

19

There are various frameworks and extensions that realize MapReduce model like

Apache Hadoop and Couchdb. Now, we are describing in details Apache Spark that is

an extension of MapReduce model used for processing big data.

2.4 Apache Spark

Apache Spark is an open-source platform for processing large-scale data. Spark

offers the ability to access data in a variety of sources, including Hadoop Distributed

File System (HDFS), OpenStack Swift, Amazon S3 and Cassandra. Spark is mainly

designed to run in-memory, it to handle iterative analysis and more rapid, less

expensive data chomping. It provides libraries like a fully-featured machine learning

library (MLlib) which used in this work, a graph processing engine (GraphX), data

frames and SQL processing, and stream processing.

2.4.1 Spark Programming Model

Spark is a parallel programming model runs on clusters in which there is a master

node handles the spark driver and send tasks to the executors using a cluster manager.

Spark provides two main abstractions for parallel programming and they are RDDs

and operations applied on these RDDs.

Zaharia, Chowdhury, Franklin, Shenker, and Stoica (2010) present RDD which

stand for Resilient Distributed Dataset as a read only collection of objects partitioned

Spark Driver

(Spark
Context)

Cluster
Manager

Executor 1 Executor 2 Executor n

Figure (2.4): Spark Programming Model

www.manaraa.com

20

across a set of machines that can be rebuilt if a partition is lost. The elements of an

RDD need not exist in physical storage; instead, RDD contains enough information to

compute the RDD starting from data in a reliable storage. This means

that RDDs can always be reconstructed if nodes fail. In Spark, each RDD can be

constructed using transformations in different ways:

 From a file in a shared file system, such as the Hadoop Distributed File ystem

(HDFS).

 By “parallelizing” a Scala collection in the driver program, which means

dividing it into partitions that will be sent to multiple nodes.

 By transforming an existing RDD using an operation called flatMap, which

passes each element through a user-provided function of type A ⇒ List[B].

Other transformations can be expressed using flatMap, including map that

pass one-to-one function of type A ⇒ B) and filter (pick elements matching

a predicate).

 By changing the persistence of an existing RDD. By default RDDs are lazy

in which show up on demand when they are used in a parallel operation and

are discarded from memory after use. However, the persistence of an RDD

can change through two actions:

o cache action leaves the dataset lazy, but hints that it should be kept

in memory after the first time it is computed, because it will be

reused.

o save action evaluates the dataset and writes it to a distributed file

system such as HDFS and can be used in future operations on it.

RDD can be operated using various operations called actions like reduce() which

combines dataset elements using an associative function to produce a result at the

driver program. collect() sends all elements of the dataset to the driver program.

foreach() passes each element through a user provided function.

2.4.2 Spark Memory Management

www.manaraa.com

21

The memory model used since Spark version 1.6.0 and up is the unified memory

model as shown in Figure 2.5 and it is consist of three main sections as described by

(Grishchenko, 2016):

1. Reserved Memory: is reserved by the system, which has approximate size of

300MB from RAM, which means it does not participate in Spark memory

region size calculations, and its size cannot be changed in any way without

Spark recompilation. Note that it is only called reserved and not used by Spark

in any way, but it sets the limit on what you can allocate for Spark usage. Even

if you want to give all the Java Heap for Spark to cache your data, you won’t

be able to do so as this “reserved” part would remain. Each Spark executor

should has at least 1.5 * Reserved Memory = 450MB heap, it will fail with

“please use larger heap size” error message.

Figure (2.5):0.5Apache Spark Unified Memory Model

2. User Memory: This is the memory pool that remains after the allocation

of Spark Memory, and it is up to the developer to use it in a way he want. It

www.manaraa.com

22

can store data structures that would be used in RDD transformations. The size

of this memory can be calculated using the following formula

(Java Heap – Reserved Memory) * (1.0 – spark.memory.fraction) (2.5)

3. Spark Memory: it managed by Apache Spark. Its size calculated as

(Java Heap – Reserved Memory) * spark.memory.fraction (2.6)

This section is split into 2 areas namely Storage Memory and Execution Memory, and

the boundary between them is set by spark.memory.storageFraction and equal 0.5 as

default. This boundary is not static, and in case of memory pressure the boundary

would be moved, for example one area would grow by borrowing space from another

one.

 Storage Memory: It is used for both storing Apache Spark cached data and

for temporary space serialized data. Also all the broadcast variables are stored

there as cached blocks. It does not require that enough memory for unrolled

block to be available, in case there is not enough memory to fit the whole

unrolled partition it would directly put it to the drive if desired persistence level

allows this. As of broadcast, all the broadcast variables are stored in cache

with MEMORY_AND_DISK persistence level.

 Execution Memory: It is used for storing the objects required during the

execution of Spark tasks. For example, it is used to store shuffle intermediate

buffer on the Map side in memory. It also supports spilling on disk if not

enough memory is available, but the blocks from this pool cannot be forcefully

evicted by other tasks.

2.5 Python Programming Language

Python is an open source high level programming language. Since its

rich standard library and dynamic typing and binding, encourages rapid developing of

programs and integrating systems more efficiently. In addition, it supports

other libraries and extensions available on the web without any charges that gives it

www.manaraa.com

23

ability to be more productive in different fields like web development, game and

desktop programming, big data analysis.

Python offers increased productivity, since it does not need code compiling; the

maintenance progression is extremely fast. Any bug or incompatible input will never

cause a failure. Instead, the interpreter will raises an exception and if the program does

not catch the exception, the interpreter prints a stack trace. The python debugger allows

checking of local and global variables, validating expressions, setting breakpoints,

stepping through the code line by line, and more. Even with the fast debugging the

python provides, the quickest debugging is by adding a few print statements to the

source.

2.6 Performance and Classification Evaluation

The proposed approach is expected to be faster and get better results than the

sequential version. For that, we are using the following metrics to verify the text

classification system efficiency and the results accuracy (Czech, 2017; Japkowicz &

Shah, 2011):

2.6.1 Accuracy

Accuracy is the percentage of retrieved instances that correctly classified by the

classifier.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (2.7)

TP is number of positive instances that are labelled correctly by the classifier,

TN is number of negative instances that labelled correctly by the classifier, FP is

number of positive instances that are labelled incorrectly by the classifier, and FN is

number of negative instances that labelled incorrectly by the classifier.

2.6.2 Precision

Precision is the percentage of predicted documents for the given topic that are

correctly classified.

www.manaraa.com

24

Precision = (TP) / (TP + FP) (2.8)

2.6.3 Recall

Recall is the percentage of the total documents for the given topic that are

correctly classified.

Recall = (TP) / (TP + FN) (2.9)

2.6.4 F-measure

F-measure is a standard statistical measure used to measure the performance of

a classifier based on precision and recall.

F-measure = (2 * Precision * Recall) / (Precision + Recall) (2.10)

2.6.5 Speedup

Speedup measures the ratio of performance to compare between two programs.

For example, comparing versions of program with the same code and different number

of processors or comparing two algorithms computing same result. Selecting the

correct factor is the base for the comparison and is stated on a case basis. Speedup

generally used to show the effect on performance after any resource enhancement and

it is computed using the following formula:

S = Ts / Tp (2.11)

where Ts is the execution time using only one processor and Tp is the execution

time using p processors.

2.6.6 Parallel Efficiency

Parallel efficiency (E) measure how much of the available processing power is

being used and commonly defined as the speedup (S) divided by the number of units

of execution (P) (processors, cores, etc) as presented in the following equation:

E = S / P (2.12)

2.6.7 Scalability

To test how scalable a system it is a non-functional testing. It measures the ability

of a system, a network, or a process to continue to work properly when it is scaled up

www.manaraa.com

25

in size or volume in order to meet a rising need like load supported, the number of

transactions, and the data volume. For example: An ecommerce site may be able to

handle orders for up to 100 users at a time but scalability testing can be performed to

check if it will be able to handle higher loads during peak shopping seasons.

In parallel classification systems, the scalability is estimated based on parallel

efficiency, and observed by the system capability to handle work when the problem

size or the number of processors are growing.

2.7 Summary

In this chapter, we have presented an overview of the basic theoretical and

technical foundation used in this research. We have presented a brief description of

Arabic language and the challenging faced while working with it, the overall stage in

text classification, text classifiers, and Naïve Bayes and Multinomial LR classifiers.

We also shed the light on technical foundations are used in this work namely Apache

Spark, python programming language. At the end, we specified the performance

metrics and classification measures to be used to evaluate the parallel classifiers

accuracy.

In the next chapter, we provide an overview of related work in text classification

and its parallelization.

www.manaraa.com

Chapter 3

Related Work

www.manaraa.com

27

Chapter 3

Related Work

Text classification (TC) for various languages and domains took researchers

attention through various researches. There are many TC algorithms and each one of

them has its structure, memory, time, and computation complexity. This chapter spots

the light on some of these researches considering text language, used algorithm,

applied methodology, performance and classification results. These researches are

categorized into three categories: sequential TC, text pre-processing tasks affecting TC

accuracy, and parallel TC.

3.1 Sequential Text Classification Algorithms

Mamoun and Ahmed (2014) conducted a survey on different approaches used

for classifying Arabic text determining the most used algorithms and compared them

in terms of corpus size, numbers of classes, used classifiers, accuracy, and other. They

found a lack in Arabic text classification research, SVM, Naїve Bayesian and K-

Nearest Neighbour used frequently, and SVM recommended in relatively large corpus,

while C 5.0 recommended with smaller and large corpus. Based on these outcomes, it

encourages using Naїve Bayesian with large-scale Arabic text.

Wahbeh and Al-Kabi (2012) conducted text classification on Arabic text

collected from different websites of 1000 documents using SVM, Naïve Bayesm and

C4.5 classifiers. The used documents had pass through pre-processing tasks to convert

them into appropriate format for use on Weka (Hall et al., 2009) toolkit. Their work

revealed that Naïve Bayes classifier achieves the highest accuracy followed by the

SVM classifier, and C4.5 classifier respectively. The SVM requires the lowest amount

of time to build the model needed to classify Arabic documents, followed by Naïve

Bayes Classifier, and C4.5 classifier respectively. Since, the dataset size can influence

the computation complexity of the classification. The used dataset size in this work

was relatively small and did not provide any noticeable improvement on the

computation complexity of the classification.

www.manaraa.com

28

Al-Tahrawi (2015) investigated logistic regression to classify Arabic text for the

first time in research. The experiments conducted on Alj-News dataset, which

collected from Al-Jazeera Arabic news website. It consists of 1500 Arabic news

documents distributed evenly among five classes: Art, Economic, Politics, Science and

Sport. Each class has 300 documents 240 for training and 60 for testing. The dataset

is applied to different text preprocessing tasks. Khoja stemmer is used , then chi square

used as feature selection and a local policy is used to select a reduced features for

building the LR classifier (only 1% of each class features). To build LR model, they

used the Iteratively Reweighted Least Squares (IRLS) nonlinear optimization

algorithm as a fitting procedure. The results indicated LR has very accurate

classification performance in which had a precision of 96.49, a recall of 91.67 and a

F1-measure of 94.0171. These results show that LR is a competitive Arabic text

classifier. Moreover, that encourage using LR in our research since it can be used for

classifying larger datasets in a parallelized manner to test how such datasets affects its

performance.

3.2 Text Preprocessing Techniques affecting Classification Accuracy

In 2015, Alhutaish and Omar have studied the use of the K-Nearest Neighbour

(K-NN) classifier, with an Inew, cosine, jaccard and dice similarities, in order to

enhance Arabic text classification. Arabic dataset is used which is consisting of 3,172

documents, distributed into four categories: Arts, economic, politics and sport. Its text

represented as non-stemmed and stemmed text, with the use of TREC-2002 light

stemmer, in order to remove prefixes and suffixes. However, for statistical text

representation, Bag-Of-Words (BOW) and character-level three (3-Gram) were used.

In order to reduce the dimensionality of feature space; they used several feature

selection methods. The Experiments showed that the K-NN classifier, with the new

method similarity Inew 92.6% Macro-F1, had better performance than the K-NN

classifier with cosine, jaccard and dice similarities. Chi-square feature selection, with

representation by BOW, led to the best performance over other feature selection

methods using BOW and 3-Gram. This approach reduced the features but its

performance accuracy can be different with large-scale Arabic text of high

www.manaraa.com

29

dimensionality and with larger number of categories. The KNN returns better results

and performance with small number of categories and small size of text corpus.

In 2013, Al-Thubaity et al. studied the effect of combining five feature selection

methods, namely CHI, IG, GSS, NGL and RS, on Arabic text classification accuracy.

They used Naïve Bayes classification algorithm to classify a Saudi Press Agency

dataset of comprised 6,300 texts divided evenly into six classes. They used for feature

representation three schemas, Boolean, TFiDF and LTC. Their work showed slight

improvement in classification accuracy for combining two and three feature selection

methods and no improvement on classification accuracy when four or all five feature

selection methods were combined. The feature selection methods can reduce the

computation complexity, text dimensionality, and improve the accuracy rate.

Nevertheless, this approach could not do well in the case of reducing computation

complexity for classifying text documents with high dimensions. This approach

reduced the features on the other hand did not do well with large-scale text of high

number of features. However, we could use single method of feature selection to

perform on our corpus in a way to reduce the computation and observe how to enhance

the accuracy of the results.

Elhassan and Ahmed (2015) conducted Arabic text classification on full words

and determine the text preprocessing efficiency on them in the accuracy of both

training model and classifier. They used in house corpus of 750 documents from local

and international newspaper allocated into five categories: economy, political,

religion, sport and technology. Every category contains 150 documents that 105 used

for training the classifier and the rest used for testing it. The documents in the corpus

preprocessed by used two approaches: observation the data set and extended stop

words remove. The experiments applied Sequential Minimal Optimization (SMO),

Naïve Bayesian (NB) J48 and K-nearest neighbors (KNN) to build the training models.

They showed that the two approaches enhanced the accuracy of the training models

and indicated that the SVM algorithm outperformed all the other algorithms regard to

F1, Recall and Precision measures. However, we will perform different stemming

algorithms on larger Arabic datasets to investigate its effectiveness on the results

accuracy.

www.manaraa.com

30

3.3 Text Classification with Parallel Computing

In 2016, Shen et al. produced an improved Naïve Bayes classifier applied using

MapReduce model on a hadoop cluster that the learning process of the NB classifier

was executed in parallel and the training set was split and distributed among each node

in the cluster to accomplish word segmentation statistics. Then start building the

classifier model by calculating the probability of each word belonging to each class

and overlay, and as a final step getting the probability of the various classes of the

document and take the maximum as the classification results. To get better results a

large number of the probability vector computations was needed and that was

considered a time consuming. For that, the words one by one was processed

statistically in parallel by each node. At the end, the classification results was

combined. The experiments was conducted on a hadoop LAN cluster of one master

node and 9 child nodes. The internet corpus Sogou data of 10 classes was used in the

classification process. The tryouts showed that the processing time for the same data

scale was reduced by increasing the number of nodes, thus having a better

computations speed. It also showed an improvement on the efficiency of the

classification with large numbers of documents in which the total recognition ratio of

the improved NB classifier reached 91. 2%. This work encourages our approach in

using parallelism with classifiers to enhance performance and results especially with

large datasets. In spite of that, it did not test various situations like different data

language as Arabic and larger number of classes with small features set in which could

effect on the performance and efficiency of the classification system.

Abushab (2015) proposed a parallel approach based on the Naïve Bayes

algorithm for classifying large scale Arabic text using MapReduce (Dean &

Ghemawat, 2010) model. The Shamela corpus used for classification containing

101,647 text documents of eight classes. The approach was tested on a Hadoop (White,

2012) cluster of 16 machines one as name node and the rest as data nodes. The

experiments used the generated pre-processed corpus under these representations

([light stemming, root stemming] -> [f, tf-id]). They showed that the parallel

classification approach can process large volume of Arabic text efficiently on a

MapReduce cluster and significantly improves speedup up to 12 times better than the

www.manaraa.com

31

sequential approach using the same classification algorithm. In addition, classification

results showed that the proposed parallel classifier has preserved accuracy up to 97%.

This work supports our approach for using clusters, but instead of using Hadoop based

cluster, we will use the Apache Spark framework that is assumed to be faster than

Hadoop. However, this approach has used representation as well as feature selection

methods that can be considered in our approach in which feature selection reduces the

size of the vector space and can affect the classification performance.

Xu, Wen, Yuan, He, and Tie (2014) and Caruana, Li, and Qi (2011) both

presented a parallel SVM based on MapReduce (PSMR) model for email

classification and spam filtering respectively. Traditional SVM training is an intensive

computational process. Both works reduced the training time significantly, enhanced

accuracy and computation time. Nevertheless, both approaches needed more testing

on larger datasets.

Abu Tair and Baraka (2013) proposed a high performance parallel classifier for

large-scale Arabic text based on the k-NN algorithm. They evaluated the parallel

implementation on a multicomputer cluster that consists of 14 computers, using C++

programming language and the MPI library. They used OSAC Arabic corpus collected

from multiple websites; the corpus includes 22,428 text documents. Each text

document belongs to one of ten categories. The experimental results on the

performance indicated that the parallel classifier design has very good speedup

characteristics when the problem size scaled up. In addition, classification results

showed that the proposed classifier has achieved accuracy, precision, recall, and F-

measure with higher than 95%. This work supports our approach in terms of using

parallelism in a cluster, but the volume of text documents used in corpus is small-scale

compare to large volume of text documents with high dimensions.

Zhou, Wang, and Wang (2012) proposed a parallel Naïve Bayes classification

algorithm based on MapReduce. They built a small cluster with three business

machines (1 master and 2 slaves) on Linux. They tested efficiency and scalability of

proposed parallel Naïve Bayes algorithm on seven datasets from the UCI Machine

Learning repository with different size (from 178 KB to 1 MB). The proposed

classifier trained the training data sets to generate the classification model, and then

www.manaraa.com

32

used the model to classify the removed category samples. The proposed model

improved algorithm performance when used with large data set. Also enhanced the

efficiency of the algorithm. This work supports our approach in terms of using cluster

and Apache Spark, as a viable and attractive programming model for large data

processing.

Chu et al. (2007) proposed a parallel implementation for many classifiers

(weighted linear regression (LWLR), k-means, logistic regression (LR), naive Bayes

(NB), SVM, ICA, PCA, Gaussian Discriminant Analysis (GDA), EM, and Back

Propagation (NN) using MapReduce model on Shared-memory system. They specify

different sets of mappers to calculate them, and then the reducer sums up intermediate

result to get the result for the parameters. Their experiment was on a 16 way Sun

Enterprise 6000 running Solaris 10. They evaluated the average speed up on ten

datasets from the UCI Machine Learning repository with different size, which made

their report more convincing. The results showed linear speedup with an increase in

number of processors. This work improved the computation time but there is no

evidence that the accuracy of proposed parallel classifier improved in terms of dataset

size and number of features.

3.4 Summary

The preceding researches in this chapter have presented various works covering

text classification in Arabic and English languages. We went through researches

conducted sequential TC like NB, and LR and we found out that NB can be suitable

with Arabic text classification but it need to work more with larger datasets in which

the size of a data set could influence the complexity of calculations. And LR is

encourage to use with large scale datasets. Another researches we checked out

mentioned that using several preprocessing tasks like stemming and feature selection

could effect on the classification efficiency and the number of classes in the dataset.

The last researches we reviewed applied a parallelized TC highlighted the advantages

of using parallelism based on MapReduce model and how could reflect on the TC

system performance and classification efficiency.

www.manaraa.com

Chapter 4

The Proposed Parallel

Classification Approach

www.manaraa.com

34

Chapter 4

Parallel Classification of Arabic Text Using NB and LR

In this chapter, we present the proposed parallel approach for NB and LR

classifiers. We give details in the corpuses we used and how we collect them. Then we

explain the preprocessing phases of two text corpuses. First, we present the sequential

text preprocessing using in house Java program, then we represent the parallel

computations used for term weighting namely TF-IDF. After that, we dive in the

proposed parallel classification based on MapReduce for NB and LR respectively. We

intend in this chapter to explore and describe the related details of the proposed parallel

classifiers approach.

4.1 The Proposed Parallel Classification Approach

Figure 4.1 illustrates the proposed approach workflow. We first collect and

create large-scale Arabic text of various Islamic domains and perform the required text

pre-processing methods to represent the text in a suitable form for the classification

task.

Arabic text pre-processing is accomplished using in-house Java program. It

tokenizes the text into tokens, and then normalizes each token into its standard form.

For example, مدرسه –احمد , مدرسة –أحمد . Then removes Arabic stop words like , الذين

 ,that does not have any important meaning to reduce the dataset size. After that هؤلاء

derives each token to its stem or root using light1 stemmer like كاتب -بون كات . Term

weighting is performed by calculating TF-IDF terms as feature vectors to generate

proper text representations using a Python program running on Apache Spark cluster.

Before any term weighting computations, setting the number of features set to use per

document eliminates the features numbers.

www.manaraa.com

35

Both text representation and feature selection are applied on the pre-processed

text in parallel on a standalone spark cluster in which the dataset is distributed between

the master and worker nodes. We accomplish these steps to see how they can affect

the proposed approach efficiency and accuracy.

After preparing the text corpus, we design the proposed parallel model based on

MapReduce model for text classification algorithms, namely Naïve Bayes and Logistic

Regression. Before implementation, the required frameworks and programming model

are installed, configured and tested on each node in the working environment.

1. Collect and Create Arabic
Corpus

2. Perform Applicable Arabic
Text Preprocessing

3. Design The Proposed Parallel
NB and LR Classifiers

4. Implement The Proposed
Parallel NB and LR Classifiers

5. Conduct Experiments

5.1 Classify text using proposed
Parallel NB

5.2 Classify text using proposed
Parallel LR

6. Evaluate and Discuss Results

Figure (4.1):0.1The Proposed Text Classification Approach Workflow

www.manaraa.com

36

These include Apache Spark framework release 1.6.2 (Spark, 2016), Python

version 3.5.1 (Rossum, 2015), Java version 1.8, and windows distribution of Hadoop

version 2. The designed model for both mentioned classifiers is implemented and

realized through the Apache Spark framework. The model split the used dataset into

two parts: one for training and the other for testing the classifiers as shown in Figure

4.2.

Based on the implementation, we prepare the experimental environment with the

pre-processed text and a computer cluster of 1, 2, 4, 8, and 16 nodes respectively. The

experiments are conducted on both proposed classifiers separately in which the

evaluation of the system efficiency and the results accuracy are measured using the

classification and performance metrics.

The process of building the parallel Naïve Bayes and LR classifiers which are

established the core of our approach includes three stages: text pre-processing, training

model, and testing the generated classifier model. Next, the designed model workflow

is presented and deliberated based on Figure 4.1 and 4.2.

fn … f3 f2 f1

fn … f3 f2 f1

Input (Training Set)

Feature

Extraction

and

Weighting

Features Set

Classification

Algorithm build

Classifier

Model

Input (Testing Set)

predict

Features Set

Feature

Extraction

and

Weighting

Training Classifier Model

Testing Classifier Model

Labels

Predicted

Labels

 Figure (4.2):0.2Classification Process on Apache Spark

www.manaraa.com

37

4.2 Creation and Collection of Arabic Text Corpus

One of the obstacles facing this research in Arabic text classification is the lack

of suitable Arabic text corpus with suitable large size for training the proposed parallel

classifiers NB and LR.

Various Arabic data sets are available for text classification but most of them are

not applicable for research and do not meet our experimental requirements of data size

and nature for large-scale Arabic text corpus. For that reason, we choose to collect and

create two real Arabic text corpuses, which differ in size, number of classes, and

features dimensionality.

4.2.1 Shamela Corpus

It is a corpus collected by (Abushab, 2015). They collected the documents from

Shamela library using tools available in Shamela library software. The process

includes converting document files into text format with UTF-8 Encoding using Zilla,

which is a word to text converter by software informer.

The collected Shamela corpus is considered as a large-scale dataset covers

various Islamic fields in Arabic language, its size is 5 Gigabytes in total, and it is

categorized into eight main topics: Aqeda, Ausol, Feqh, Al-Hadith, History, Sirah,

Tafser, and Trajem.

4.2.2 Al-Bokhary Corpus

Since, the collected Shamela corpus has large size and features dimensionality.

We need also to measure classification on a contrast situation where corpus size and

features dimensionality are small but number of classes is big and that match with

Sahih Al- Bokhary.

Sahih Al-Bokhary is one of the six major hadith collections and the most trusted

one along with Sahih Muslim. It includes 97 sections called books. We get it as word

files from Shamela Library software. Then we managed these files using in house java

program that read the files and extract hadiths matan only which essential for

classification and pre-processed them then write them into text files of UTF-8

www.manaraa.com

38

encoding. The generated corpus contains 21 categories with 4189 hadith in total, which

each category contains more than one hundred hadiths.

4.3 Text Preprocessing and Term Weighting

This stage is important before building any classifier model, which can help

getting better results and performance. It is applied on both corpuses Shamela and

Al-Bokhary individually in two consecutive steps: First, text preprocessing which

applied sequentially. Then term weighting for the preprocessed text using parallelism.

4.3.1 Arabic Text Preprocessing

This step accomplished using in house java program with AraNLP java library

that developed by Althobaiti, Kruschwitz, and Poesio (2014) to apply various

preprocessing tasks on Arabic text based on the work needs in a sequential manner

then save the preprocessed text into text files of UTF-8 encoding to a given path.

Figure (4.3):0.3Sahih Al-Bokhary Front Cover

www.manaraa.com

39

These tasks are described as presented in Figure 4.4:

 Normalization: normalize each token into its canonical form per line. In

Arabic there are few letters are often misspelled using:

o The Hamzated forms of Alif (آ ,إ , أ) are normalized to bare Alif (ا).

o The Alif-Maqsura (ى) is normalized to a Ya (ي).

o The Ta-Marbuta (ة) is normalized to a Ha (ه).

o Remove tatweel. For example: (حركــــات) to (حركات)

o Remove numbers and special characters

o Remove Excessive spaces.

 Remove diacritic and punctuation marks.

 Tokenization: is the process of breaking text to its element words. The

Arabic text divided by white space into tokens.

 Arabic Stop words removal: remove any token considered as a stop word

and it is not content bearing such as في, هم, هي, هما.

 Stemming:

o Derive each token to its root using root stemmer.

o Derive each token to its stem using light stemmer 1.

normalize
Arabic text

remove
diacritic
marks

remove
puntuation

marks

tokenize
words

per white
space

remove
arabic
stop

words

apply stemming

•extract the root
stem of each
token

•extract the light
stem of each
token

write
each

modified
text to a
utf-8 text

file

Figure (4.4):0.4First Step in Text Pre-processing in a Sequential Manner

www.manaraa.com

40

 Writing to files: the preprocessed Arabic text written into text files of

UTF-8 encoding. For each text file in the corpus, it is saved in three forms

to its corresponding given path:

o The pre- processed text without stemming.

o The pre- processed text with root stemming.

o The pre- processed text with light stemming.

4.3.2 Term Weighting

This step is executed in a parallel way as part of the proposed parallel approach

using Apache Spark (pySpark API) and MLlib API for better computation

performance. We use Term Frequency-Inverse Document Frequency (TF-IDF) as

vector representation for term weighting on each corpus.

As a start, we read documents into a single Resilient Distributed Dataset (RDD)

per category then map each document into a tuple of document category id it belongs

to and array of tokens of its content. Therefore, we have eight RDDs for Shamela

Figure (4.5):0.5Term Weighting Steps in the Proposed Parallel Approach where n is

the number of categories in the corpus

www.manaraa.com

41

corpus and twenty-one RDDs for Bokhary corpus. Note that the meaning of words or

their order will not make a difference in the computations and results since we use the

bag of words concept.

After mapping the documents of all categories, we start computing TF-IDF

values for all the read documents into a single RDD. First, we count tf value of each

token in the documents using HashingTF class that uses the Scala native hashing.

According to the computed tf vectors, the IDF model is generated. Then the IDF model

transforms tf vectors into TF-IDF vectors for each document where the IDF values are

the same across all documents.

Before building the classification model, the total RDD of TF-IDF vectors of all

the documents in the dataset is grouped into single RDD of LabeledPoints that

contains corpus categories and their corresponding features, since the classifier takes

input of RDD of LabeledPoints. The final RDD is split into two RDDs; trainRDD for

training the classifier model and testRDD for testing the generated classifier model as

presented in the next sections 4.3.2 and 4.3.3.

4.4 Training Stage

In this research, the training stage uses the preprocessed text which represented

as TF-IDF vectors in trainRDD for building the classifier models NB and LR that

described in detail next for later use in prediction and evaluation as described in

Section 4.5.

4.4.1 Naïve Bayes (NB)

Naïve Bayes (NB) is one of the machine learning algorithms commonly used in

text classification which mentioned earlier in Section 2.2.1 with its needed

computations. Parallel NB is applied on Apache Spark that realizes enhanced

MapReduce model. For simplicity, Figure 4.6 visualizes the parallel NB using Apache

Spark MlLib API for training classifier.

www.manaraa.com

42

Parallel NB classifier inputs the training set TrainingRDD and divides it into

partitions then distributes the partitions to the executors to execute computations on

them and return the results to the master machine which runs the driver program.

First computations by the executors after caching the partitioned RDD which

came from the master is counting the documents per category. Then the driver reduces

from the executors and get the total documents per category and the total documents

in the entire training set RDD. After that the master compute the prior probability per

category existing in the corpus and cache it. If any machine memory cache is being

full, the data will be written on disk instead. Then the executors concatenate all RDD

partitions they have into a single RDD. At that time, the driver collects the

concatenated RDDs from the executors and unions into single RDD to hold all the

features set without labeling. The new merged RDD also is partitioned and distributed

among the executors. The driver set task to the executors to compute each feature

mapPartitions

of RDD then

broadcast

Compute prior
for each

category

Compute prior
for each

category

Compute prior
for each

category

Driver (master)

Executors (workers)

(master)

Concatenate all

documents

from each

category into a

single RDD
compute words

Frequency

Concatenate all

documents

from each

category into a

single RDD

Concatenate all

documents

from each

category into a

single RDD

Training RDD

(class, features set)

Reduce and get

prior per category

Collect RDD

concatenated

partitions

Reduce per

word

frequency, add

1 to zero

variables
 and compute

evidence

locally

compute words

Frequency

compute words

Frequency

Compute

likelihood for

each category

Compute

likelihood for

each category

Compute

likelihood for

each category

Reduce and

get the

likelihood for

each category

locally

Figure (4.6):0.6Training Naive Bayes Classifier Data Flow on Apache Spark

www.manaraa.com

43

frequency. After that, the driver reduces each feature frequency from executors and

sum the frequencies per feature and computes the evidence. Finally, the executors

compute the conditional probability (likelihood) of each feature with the given

category. The driver reduces and gets the likelihood per feature given category. At the

end, the driver has the generated NB model and broadcast it to the executors for

prediction which is described in Section 4.3.3.1.

4.4.2 Logistic Regression (LR)

LR known with iterative computations and that makes it suitable to be

parallelized. In Figure 4.7 the LR training data flow is depicted.

The driver broadcasts the training partitions RDD and the initialized weights.

After that, loops are conducted until converge and reach insignificant results. In every

loop, the executors compute the loss and the gradient for each document, and sum

them up locally. Then the driver reduces and getSum from executors totalLoss and

totalGradient which have two parts: the model that depends on data while the loss of

regularization does not depend on data. Keep in mind that the loss and gradient of

each document is independent.

After that, handle regularization using L-BFGS optimizer to find tthe next step.

When the loops are finished, the final model weights are available on the driver.

Figure (4.7):13Training Logistic Regression Classifier data flow on Apache Spark

www.manaraa.com

44

4.5 Testing Stage

In this stage, testRDD is the RDD used for prediction and is resemble 30% of

the data and we also make prediction using the entire data dataRDD as we described

is next Sections 4.5.1 and 4.5.2.

4.5.1 NB

Testing the NB has only one computation to estimate the document probability

existence per category and to select the document category with the highest probability

score. The data flow of testing the paralleized NB is shown in Figure 4.8.

Before any predictions, the trained NB model and the testing RDD are

broadcasted to the executors. To overcome the zero variables, the laplacian smoothing

is used through calculating the logs of the probabilities by the executors. The driver

reduces and gets logs of the priors and the conditional probabilities. For each document

in the testing RDD, the document probabilities of belonging to each category are

calculated and saved. Then the highest probability is chosen as the predicted document

category.

4.5.2 LR

 Before making any predictions, the testRDD and LR generated model are

broadcasted to the executors. For each document, iterative computations are made until

reaching the maximum probability of the given category.

The document probability predictor function is the regression coefficient in

which the executors compute the coefficients for each category. Then the driver

reduces and sums up the results and takes the highest probability as the predicted

category.

www.manaraa.com

45

B

4.6 Summary

In this chapter, we have presented the proposed parallel classification approach

based on MapReduce model on Apache Spark for NB and LR. We collected Shamela

corpus and collected Al-Bokhary corpus to use in the experiments. We have

preprocessed the two corpuses in two phases. The first phase has been accomplished

by hand made Java program and has saved the new text into UTF-8 text files. Then

has been computed TF-IDF in parallel manner in which term frequency is computed

using hashing function of Scala, then the IDF model. At the end, IDF model has been

used to transform TF-IDF to RDDs. Also, we have used two parallel MapReduce

Broadcast NB

model and the

partitioned

testing RDD

Compute log

for the prior of

each category

Compute log

for the prior of

each category

Compute log

for the prior of

each category

Driver (master)

Executors (workers)

(master)

For each

feature,

compute log of

the likelihood

For each

document,

Compute the

probability of

being in each

category

For each

feature,

compute log of

the likelihood

For each

feature,

compute log of

the likelihood

Testing RDD

(class, features set)

Reduce and get log

of the prior per

category

Reduce and get

the logs of

likelihood for

each category

Reduce and get

the probability

of existence in

each category

and take the

highest

probability as

the predicted

category

For each

document,

Compute the

probability of

being in each

category

For each

document,

Compute the

probability of

being in each

category

NB Model
(classes priors,

likelihoods)

Figure (4.8): Testing Naive Bayes Classifier Data Flow on Apache Spark Figure (4.8):14Testing Naive Bayes Classifier Data Flow on Apache Spark

www.manaraa.com

46

methods, one for the training stage and the other for the testing stage. Both stages have

been implemented differently based on the NB and LR.

In the next chapter, we present and discuss the experimental environment

settings and the results of the experiments carried out to realize and evaluate the

proposed parallel classifiers NB and LR.

www.manaraa.com

Chapter 5

Experimental Results

and

Approach Evaluation

www.manaraa.com

48

Chapter 5

Experimental Results and Evaluation

In this chapter we present and analyse the experimental results to evaluate the

proposed NB and LR parallel classifiers using Apache Spark which realizes the two

algorithms as MapReduce model. To prove any enhancement on the classifiers’

performance and efficiency, parallel NB and LR classifiers are used in the experiments

which are provided as part of the Apache Spark MLlib library. The used corpuses in

the experiments are described with their main characteristics. The experimental

environment and its settings are also described. The applied steps of the

implementation of the NB and LR parallel classifiers are presented together with

conducting and measuring the different performance and classification metrics.

Finally, the experimental results are extracted and discussed together with a

comparison between the used NB and LR parallel classifiers. First we present the

Corpus used in the experiments.

5.1 Corpus

This research required large scale dataset to evaluate the parallel classifiers NB

and LR called Shamela, and Al-Bokhary which is contrast to Shamela.

5.1.1 Shamela Corpus

Shamela corpus has a size of almost 5 Giga Bytes with eight categories

(Abushab, 2015). Preprocessing of the text corpus is performed using three different

stemming types to observe its effects on the classification accuracy and save the

processed corpus in utf-8 text files.

Since a large number of documents is needed for the experiments, we split each

preprocessed text file into smaller text files of 30 kilobytes per file. The number of

documents per category for each stemming approach is shown in Table 5.1.

www.manaraa.com

49

Table (5.1):0.1 Shamela Corpus Count Documents per Category

Category Books

Documents

(Without

Stemming)

Documents

(Light

Stemming)

Documents

(Root

Stemming)

1 Aqeda 434 12,427 9,507 7,388

2 Ausol 313 4,379 3,406 2,560

3 Feqh 672 40,415 30,786 24,155

4 Hadith 526 40,756 30,882 24,339

5 History 186 15,998 12,585 9,770

6 Sirah 372 8,021 6,251 4,939

7 Tafser 222 32,229 24,935 19,146

8 Trajem 1,004 26,268 20,629 16,022

- Total 3,729 180,493 138,981 108,319

It is noticed that the stemming approach affects the number and size of

documents per category as presented in Figure 5.1 in which root stemming reduces

number of the original corpus documents without applying any stemming approach in

total to almost 40% more than light stemming 1 which reduces to almost 23%. We also

noticed that Feqh and hadith are the biggest categories in size even they have number

of documents less than Trajem.

Figure (5.1): Stemming Effectiveness on Shamela Corpus

1
2

,4
2

7

4
,3

7
9

4
0

,4
1

5

4
0

,7
5

6

1
5

,9
9

8

8
,0

2
1

3
2

,2
2

9

2
6

,2
6

8

9
,5

0
7

3
,4

0
6

3
0

,7
8

6

3
0

,8
8

2

1
2

,5
8

5

6
,2

5
1

2
4

,9
3

5

2
0

,6
2

9

7
,3

8
8

2
,5

6
0

2
4

,1
5

5

2
4

,3
3

9

9
,7

7
0

4
,9

3
9

1
9

,1
4

6

1
6

,0
2

2

AqedaAusolFeqhHadithHistorySearaTafserTrajem

12345678

Documents (Without Stemming) Documents (Light Stemming)

Documents (Root Stemming)

www.manaraa.com

50

5.1.2 Al-Bokhary Corpus

We extract this corpus from Sahih Al-Bokhary with only hadith Matans as

mentioned earlier in Section 4.2.2. We summarize the corpus categories and number

of hadiths in Table 5.2. We need to notice that Matan text is small in size for that there

is not any observations to be considered after preprocessing.

Table (5.2): Al-Bokhary Corpus Categories

Book الكتاب Number of

Hadith

1 Book4 108 الوضوء

2 Book8 166 الصلاة

3 Book10 266 الأذان

4 Book23 156 الجنائز

5 Book24 114 الزكاة

6 Book25 241 الحج

7 Book30 110 الصوم

8 Book56 286 الجهاد والسير

9 Book59 127 بدء الخلق

10 Book60 154 أحاديث الأنبياء

11 Book61 144 المناقب

12 Book62 أصحاب النبي 119

13 Book63 170 مناقب الأنصار

14 Book64 464 المغازي

15 Book65 قرآنتفسير ال 479

16 Book67 180 النكاح

17 Book77 181 اللباس

18 Book78 252 الأدب

19 Book80 106 الدعوات

20 Book81 181 الرقاق

21 Book97 185 التوحيد

 Total 4189 الاجمالي

5.2 Experimental Environment

The experimental environment is built on an Apache Spark cluster of 16

machines as workers (executors) and a single machine as Master (driver manager). All

www.manaraa.com

51

cluster machines are Dell Laptops with 64 bit, Intel Core i3-330M 2.53GHz, 500GB

HDD, and 4GB RAM. 3 GB RAM are reserved for apache spark driver and executors.

 These machines are connected through local area network with speed of 10/100

Mbps. Windows 10 is the running operating system on them and set them up with

Apache Spark framework release 1.6.2 (Spark, 2016), Python version 3.5.1 including

py4j and numpy packages (Rossum, 2015), Java JDK version 1.8, and windows

distribution of Hadoop version 2.

The proposed parallel classifier approach has been implemented on Apache

Spark cluster with these predefined settings which listed and explained in Table 5.3

that placed in the spark.defaults config file.

Table (5.3): Spark Cluster Configuration Settings

Option Value

1 spark.driver.memory 3g

2 spark.executor.memory 3g

To set amount of memory to use for each node in the cl

3 spark.driver.extraJavaOptions -XX:+UseCompressedOops

4 spark.executor.extraJavaOptions -XX:+UseCompressedOops

This option set for master and executors machines to reduce java memory usage and

garbage collections.

5 spark.python.worker.reuse true

Reuse Python worker or not. If yes, it will use a fixed number of Python workers, does not

need to fork() a Python process for every tasks. It will be very useful if there is large

broadcast, then the broadcast will not be needed to transfered from JVM to Python worker

for every task.

6 spark.network.timeout 180s

set timeout for all network interactions

7 spark.locality.wait 30s

How long to wait to launch a data-local task before giving up and launching it on a less-

local node.

8 spark.scheduler.maxRegisteredResourcesWaitingTime 60s

Maximum amount of time to wait for resources to register before scheduling begins.

9 spark.task.cpus 2

Number of cores to allocate for each task.

10 spark.executor.heartbeatInterval 60s

Interval between each executor's heartbeats to the driver. Heartbeats let the driver know

that the executor is still alive and update it with metrics for in-progress tasks.

11 spark.task.maxFailures 50

Number of individual task failures before giving up on the job.

12 spark.default.parallelism 2

Default number of partitions in RDDs returned by transformations like join, reduceByKey,

and parallelize when not set by user.

www.manaraa.com

52

Naïve Bayes and Logistic Regression classifier are available in Apache Spark

framework, which is highly scalable with large scale dataset. As we will describe in

next Sections 5.3 and 5.4.

5.3 The Parallel NB and LR Classifiers Implementation in Apache Spark

The proposed parallel classifiers utilizes Apache Spark in-memory distributed

data processing platform, and parallelized NB and LR classification uses Spark MLlib

library as a MapReduce realization of machine learning.

We follow the steps as described (Karau et al., 2015) for building Apache Spark

standalone cluster with Apache Spark version 1.6.2 and for the implementation of the

parallel Naïve Bayes and Logistic Regression classifier using MLlib library. The

procedure of developing the overall classification approach takes in the following

steps:

1. Per category, the files are merged into a single file where each file is located

in a single line in the new file (using in house python program) to reduce

time spend for opening and reading from files.

2. All text preprocessing (see Section 4.3.1) is performed on Shamela

and Al-Bokhary corpuses. It is saved as text file directories into the master

then copied to all executors. Apache Spark reads the input Arabic text files

document into data blocks RDDs. It stores the metadata of each block in the

master and all the data blocks in the executors.

3. Naïve Bayes and LR work with TF-IDF vectors associated to the original

text per category that have been accomplished in the last step in

preprocessing phase (see Section 4.3.2.)

4. Join all TF-IDF vectors per category into single RDD, then Split it into

training set and testing set. In the experiments, we selected 70%, 30% as split

percentage for training and testing respectively as follows.

Python Spark Code:

training, test = dataRDD.randomSplit([0.7, 0.3], seed=0)

5. The training phase is conducted as a parallel NB classifier and as a parallel

LR classifier separately on the training set. The output of this step is the

www.manaraa.com

53

classifier model of NB and LR (see Appendix A.3 for the implementation

source code.)

6. The testing phase is conducted to test the generated classifier

model from the previous step on the testing set and record the results, analyze

and discuss them (see Appendix A.3 for the implementation source code.)

5.4 Experimental Results and Discussion

The two parallel classifiers are evaluated through precision, recall, accuracy and f-

measure based on features size.

5.4.1 Performance Evaluation

In the experiments, we used Shamela corpus, Shamela-More corpus (which is a

copy of the Shamela corpus but with smaller splitted files) as shown in Table 5.1, and

Al-Bokhary corpus. Each corpus has three groups based on applied stem approach

numbered A, B, and C (A: No stem used, B: Light1 stem, and C: Root stem). We

represented 900 features from Shamela and Shamela-More corpuses and 10,000

features from Al-Bokhary to train the proposed NB and LR parallel classifiers on

Apache Spark Standalone cluster. We have followed the described term weighting in

Section 4.3.2 to have data representations proper for the classification.

To measure the proposed NB and LR parallel classifiers, we have executed in

parallel on a single machine and on many cluster nodes 2, 4, 8, 16 respectively for one

to four rounds per experiment and registered execution time and calculate the speedup

ratio, efficiency and system scalability as described in Section 2.6. The execution time

of the proposed parallel system for building the classifiers are represented in Figure

5.2 and Figure 5.3.

www.manaraa.com

54

We observed that by doubling the number of nodes per experiment where the

execution time is decreased almost in half for large datasets. We also noticed from

Table 5.4 and Table 5.5 that total number of files effects more on the execution time

than size of text files in which non-stemmed Shamela (3,729 documents) has took

12.413 minutes and non-stemmed Shamela-More (180,493 document) has took 13.570

minutes on a single machine. In contrast, Al-Bokhary corpus has took 1.23 minute

even it has more than 4,000 documents but they are very small in size close to 1 KB

per file and that means that size of the file could affect relatively to total number of

files.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

standalone 2 4 8 16

e
xe

cu
ti

o
n

 t
im

e
 (

m
in

u
te

)

cluster Nodes Per Experiment

Shamela More No Stem Shamela More Light1 Stem

Shamela More Root Stem Shamela No Stem

Shamela Light1 Stem Shamela Root Stem

Bokhary No Stem Bokhary Light1 Stem

Bokhary Root Stem

Figure (5.2):16Execution Time of Parallel NB Classifier on Spark Cluster Nodes

www.manaraa.com

55

The execution time of the proposed parallel classifiers is slower than usual

because we used RDDs which are considered to be slower than DataFrames under

Python and Apache Spark (pyspark API). When we track the execution time of both

parallel classifiers NB and LR, LR has took more execution time than NB because of

the iterative operations nature of LR while NB has a sequential computations.

Table (4.4): Execution Time (min) of Parallel NB Classifier on Spark Cluster Nodes

using 70% - 30% Data Split

 Corpus

of

Executors

Shamela -More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

standalone 13.570 10.553 8.809 12.413 9.895 8.005 1.238 1.202 1.200

2 7.740 5.980 5.144 7.829 5.680 4.918 0.800 0.797 0.787

4 4.260 3.519 1.881 3.973 2.789 1.821 0.611 0.592 0.628

8 2.393 1.301 1.140 1.843 1.124 0.949 0.516 0.527 0.488

16 0.883 0.727 0.628 0.958 0.679 0.579 0.486 0.470 0.417

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

standalone 2 4 8 16

ex
ec

u
ti

o
n

 t
im

e
(m

in
u

te
)

Cluster Nodes per Experiment

Shamela More No Stem Shamela More Light1 Stem

Shamela More Root Stem Shamela No Stem

Shamela Light1 Stem Shamela Root Stem

Bokhary No Stem Bokhary Light1 Stem

Bokhary Root Stem

Figure (5.3):17Execution Time of Parallel LR Classifier on Spark Cluster Nodes

www.manaraa.com

56

Table (5.5):5Execution Time (min) of Parallel LR Classifier on Spark Cluster Nodes

using 70% - 30% Data Split

 Corpus

of

Executors

Shamela -More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10,000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

standalone 15.093 12.505 10.026 13.838 10.609 8.669 1.681 1.689 1.654

2 10.344 8.954 7.562 9.503 7.832 6.296 4.408 4.392 5.047

4 5.610 4.925 2.612 5.014 4.572 2.415 1.111 1.125 1.094

8 3.398 2.258 1.640 2.772 1.836 1.590 1.115 1.114 1.094

16 2.171 1.711 1.485 2.001 1.674 1.599 1.845 1.682 1.121

Next, we discuss the proposed parallel system performance based on the

execution time we have collected.

5.4.1.1 Speedup

From the execution time, we have computed the speedup ratio that shows the

improvement in the speed of execution of the proposed parallel system which executed

on Apache Spark cluster with different nodes 2, 4, 8, 16 respectively and the results

are illustrated in Figure 5.4 and Figure 5.5.

We note that with large datasets Shamela and Shamela-More, the parallel NB

classifier is almost close to the ideal speed up ratio over the cluster nodes, while the

parallel LR classifier is far away from the ideal speed up ratio after using 4 nodes

which means the LR needs a lot of resources to reach the ideal speed up. On the other

hand, Al-Bokhary classifier has relative slow speed up to its small size. And that means

that increasing number of executors do not effect on the speedup ratio with small size

datasets.

www.manaraa.com

57

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0

2 4 8 1 6

Shamel More No Stem Shamela More Light1 Stem Shamel More Root Stem

Shamel No Stem Shamela Light1 Stem Shamel Root Stem

Bokhary No Stem Bokhary Light1 Stem Bokhary Root Stem

ideal

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0

2 4 8 1 6

Shamel More No Stem Shamela More Light1 Stem Shamel More Root Stem

Shamel No Stem Shamel Light1 Stem Shamel Root Stem

Bokhary No Stem Bokhary Light1 Stem Bokhary Root Stem

ideal

Figure (5.4):19Speedup of Parallel NB Classifier on Spark Cluster Nodes

Figure (5.5):18Speedup of Parallel LR Classifier on Spark Cluster Nodes

www.manaraa.com

58

 The calculated speedup scores for both proposed parallel classifiers are

summarized in Table 5.6 and Table 5.7 which indicate that using more dataset size and

more executors make the proposed parallel classifiers more efficient and the speedup

getting more linearly in the parallelized NB and getting slow increasing ratio in the

parallelized LR, when adding more executors to the cluster.

Table (5.6):6Speedup of Parallel NB Classifier on Spark Cluster Nodes

Corpus

of

Executors

Shamela-More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10,000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

2 1.753 1.765 1.712 1.586 1.742 1.628 1.548 1.507 1.525

4 3.186 2.999 4.684 3.124 3.548 4.397 2.025 2.029 1.913

8 5.672 8.110 7.724 6.735 8.803 8.432 2.402 2.279 2.459

16 15.370 14.515 14.028 12.951 14.574 13.814 2.548 2.558 2.880

Table (5.7): 7Speedup of Parallel LR Classifier on Spark Cluster Nodes

 Corpus

of

Executors

Shamela-More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

2 1.459 1.396 1.326 1.456 1.355 1.377 0.381 0.385 0.328

4 2.690 2.539 3.838 2.760 2.321 3.589 1.513 1.501 1.512

8 4.442 5.537 6.112 4.992 5.779 5.451 1.507 1.517 1.512

16 6.953 7.308 6.751 6.916 6.336 5.420 0.911 1.005 1.475

5.4.1.2 Parallel Efficiency

Parallel efficiency is measured to check how the available resources are utilized

in the proposed parallel approach for both classifiers NB and LR. A system with a

linear speed up rate has a parallel efficiency equal 1. A task based parallel system is

more efficient than data based parallel system due to the competence use of memory

cache per executor.

We measures parallel efficiency of the proposed approach from calculated

speedup ratio in Table 5.6 and Table 5.7.

www.manaraa.com

59

Figure 5.6 shows that parallel efficiency is increasing with Shamela-More and

Shamela corpuses, and decreasing with Al-Bokhary corpus in both parallel NB and

LR classifiers. Because of the Apache Spark model which realized MapReduce

requires a large scale data sets sizes which match with Shamela-More and Shamela

data sets.

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 1 6

Shamela More No Stem Shamela More Light1 Stem Shamela More Root Stem

Shamela No Stem Shamela Light1 Stem Shamela Root Stem

Bokhary No Stem Bokhary Light1 Stem Bokhary Root Stem

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 4 8 1 6

Shamela More No Stem Shamela More Light1 Stem Shamela More Root Stem

Shamela No Stem Shamela Light1 Stem Shamela Root Stem

Bokhary No Stem Bokhary Light1 Stem Bokhay Root Stem

Figure (5.7):21Parallel Efficiency of Parallel LR Classifier on Spark Cluster

Figure (5.6):20Parallel Efficiency of Parallel NB Classifier on Spark Cluster

www.manaraa.com

60

Table 5.8 and Table 5.9 summarize the parallel efficiency score for both

classifiers and we have noticed that by increasing the executors the parallel efficiency

was also increased particularly with large datasets in which the Shamela-More non-

stemmed corpus has the highest score on running 16 executors. Al-Bokhary has the

lowest scores due to its small size.

Table (5.8):8Parallel Efficiency of Parallel NB Classifier on Apache Spark Cluster

 Corpus

of

Executors

Shamela -More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

2 0.877 0.882 0.856 0.793 0.871 0.814 0.774 0.754 0.763

4 0.796 0.750 1.171 0.781 0.887 1.099 0.506 0.507 0.478

8 0.709 1.014 0.966 0.842 1.100 1.054 0.300 0.285 0.307

16 0.961 0.907 0.877 0.809 0.911 0.863 0.159 0.160 0.180

Table (5.9):9Parallel Efficiency of Parallel LR Classifier on Apache Spark Cluster

 Corpus

of

Executors

Shamela -More

(900 feature)

Shamela

(900 feature)

Al-Bokhary

(10000 feature)

A1 B1 C1 A2 B2 C2 A3 B3 C3

2 0.730 0.698 0.663 0.728 0.677 0.688 0.191 0.192 0.164

4 0.673 0.635 0.959 0.690 0.580 0.897 0.378 0.375 0.378

8 0.555 0.692 0.764 0.624 0.722 0.681 0.188 0.190 0.189

16 0.869 0.913 0.844 0.865 0.792 0.678 0.114 0.126 0.184

5.4.1.3 Scalability

The proposed classifier system scalability is estimated rather than calculated in

which a parallel system become scalable when the parallel efficiency can be kept

persistent when the number of processing units increased, or the problem size is

increased (Wu, 2012). After wrapping up previous parallel performance metrics, we

can say that the proposed parallelized NB and LR classifiers are scalable, where the

parallel efficiency is retained steady while increasing number of executors up to 16

executor in our experiments to the Apache spark standalone cluster in addition to

increasing the size of dataset where both parallel classifiers are not scalable with small

size datasets.

www.manaraa.com

61

5.4.2 Parallel Classification Evaluation

We have executed the proposed classifiers NB and LR in parallel on a single

machine and on many cluster nodes 2, 4, 8, 16 respectively for one to four rounds per

experiment and record the important metrics for measuring the quality of document

classification that we have explained earlier in Section 2.6 in each round and select the

average score in the rounds. We have noticed in each round we get different result

score and that due to various reasons:

 When using HashingTF class for applying TF scores which uses the Scala

native hashing function that lead for a different hash value per execution run

and that has been solved in Apache Spark 2.

 While cluster workers execution per round, one or more of the workers

executors are terminated through network connection error and re-run which

could led to data loss that want be taken in the calculations and that partial

solved through reset Apache spark settings as shown in Table 5.3 and

through code using try-catch block in python that ask to reconnect on

connection error or loss.

Try-catch python block:

try:

 // to-do code

except socket.error as error:

 if error.errno == errno.WSAECONNRESET:

 reconnect()

 retry_action()

 else:

 raise

 Apache Spark apply in-memory computations. For that, in heavy

computations and data with small size RAM memory could raise an

OutOfMemory exception where java heap space is full. Therefore, we reset

the storage level to memory and disk using persist() in which if the memory

is being full during execution, some memory data is going to be written on

disk instead to free the memory space for the running computations.

Reset Storage Level in Spark:

dataRDD.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)

www.manaraa.com

62

5.4.2.1 NB Classifier Evaluation

Figure 5.8 and 5.9 visualizes NB classification metrics applied on the three

corpuses Shamela, Shamela-More and Al-Bokhary based on the scores listed in Table

5.10. We need to mention that we used 30% (testRDD) and 100% (dataRDD) data

splits for testing.

The results shows that the highest accuracy score over 99% in Shamela-More

that applied root stemmer with both dataRDD and testRDD. Light1 stemmer is used

which considered bad stemmer (Otair, 2013) to test the proposed classifier in worst

situation and it has performed accuracy with almost 98%. It also has scored high

precision rates up to 99%. We explain that due to the large number of features is used

to build the classifier were 900 feature for Shamela, Shamela-More. Al-Bokhary

corpus is the opposite of Shamela where it has small feature dimensionality and size

88.00

90.00

92.00

94.00

96.00

98.00

100.00

accuracy precision recall fmeaseure

dataRDD

sham-more-no sham-more-light sham-more-stem

shamela-no shamela-light shamela-stem

bokh-no bokh-light bokh-stem

Figure (5.8):22NB Classification Metrics using dataRDD for Shamela-More,

Shamela, and Al-Bokhary Corpuses

www.manaraa.com

63

except it reaches the highest accuracy rate with root stemmer 99% and the worst

fmeasure rate to 89% with both dataRDD and testRDD.

Table (5.10):10Parallel NB Classification Metrics on Shamela, Shamela-More and

Al-Bokhary Corpuses

Test splits dataRDD testRDD

 Metric

Corpus
accuracy precision recall fmeaseure accuracy precision recall fmeaseure

sham-more-

no
99.29 99.29 99.29 99.29 99.31 99.31 99.31 99.31

sham-more-

light1
98.82 98.65 98.64 98.64 98.65 98.66 98.65 98.65

sham-more-

stem
99.57 99.57 99.57 99.57 99.58 99.59 99.58 99.58

Shamela-no 99.57 99.57 99.57 99.57 99.58 99.59 99.58 99.58

Shamela-

light1
99.57 99.57 99.57 99.57 99.58 99.59 99.58 99.58

Shamela-stem 98.69 98.76 98.69 98.69 98.35 98.44 98.35 98.34

bokh-no 95.82 95.87 95.82 95.80 88.11 88.54 88.18 88.04

bokh-light1 96.31 96.34 96.31 96.30 89.58 89.93 89.58 89.53

bokh-stem 99.57 99.57 99.57 99.57 99.58 99.59 99.58 99.58

88.00

90.00

92.00

94.00

96.00

98.00

100.00

accuracy precision recall fmeaseure

testRDD

sham-more-no sham-more-light sham-more-stem shamela-no shamela-light

shamela-stem bokh-no bokh-light bokh-stem

Figure (5.9):23NB Classification Metrics using testRDD for Shamela-More, Shamel

and Al-Bokhary Corpuses

www.manaraa.com

64

The overall classification results of the parallel NB classifier in both situations;

large data with high dimensionality and small size dataset with small dimensionality

returned noticeably more relevant results than irrelevant ones.

5.4.2.2 LR Classifier Evaluation

LR classifier is implemented on Apache Spark MLlib with L-BFGS optimizer

and L2 regularization to avoid overfitting. Figure 5.9 represents LR classification

metrics applied on the three corpuses Shamela, Shamela- More and Al-Bokhary based

on the scores listed in Table 5.11. We need to remember the used 30% (testRDD) and

100% (dataRDD) data splits for testing.

The results show that the highest accuracy score over 99% in Shamela-More that

applied root stemming using testRDD. We also used light1 stemmer as weak stemmer

(Otair, 2013) to evaluate the proposed classifier in worst case and it has achieved

accuracy with almost 98% with Shamela-More and achieved 92% with Shamela. We

noticed that Shamela-More classification measures better than Shamela and that might

for larger number of samples in Shamela-More than Shamela per category. It also has

scored high precision rates up to 99%. We explain that due to the large number of

features is used to build the classifiers. Al-Bokhary corpus is the opposite of Shamela

in feature dimensionality and size reaches highest accuracy rate with root stemmer

93.7% and the worst fmeasure rate to 81% with testRDD but it scores higher with

dataRDD closes to 98%.

www.manaraa.com

65

Table (5.11): Parallel LR Classification Metrics on Shamela, Shamela-More and Al-

Bokhary Corpuses
Test splits dataRDD testRDD

 Metric

Corpus
accuracy precision recall fmeaseure accuracy precision recall fmeaseure

sham-

more-no
99.52 99.52 99.52 99.52 99.49 99.49 99.49 99.49

sham-more-

light1
98.50 98.52 98.50 98.50 98.44 98.46 98.49 98.44

sham-more-

stem
99.88 99.88 99.88 99.88 99.85 99.85 99.85 99.85

Shamela-no 97.29 97.47 97.29 97.31 96.28 96.52 96.28 96.30

Shamela-

light1
93.52 96.21 93.52 93.90 92.83 95.52 92.83 93.22

Shamela-stem 99.60 99.60 99.60 93.90 99.46 99.48 99.46 99.46

bokh-no 97.99 98.00 97.99 97.99 93.18 93.36 93.18 93.19

bokh-light1 94.46 94.51 94.46 94.47 81.23 81.67 81.23 81.29

bokh-stem 98.15 98.16 98.15 98.15 93.72 93.87 93.72 93.72

80.00

84.00

88.00

92.00

96.00

100.00

accuracy precision recall fmeaseure

dataRDD

sham-more-no sham-more-light sham-more-stem

shamela-no shamela-light shamela-stem

bokh-no bokh-light bokh-stem

Figure (5.10):24LR Classification Metrics using dataRDD for Shamela-More,

Shamela, and Al-Bokhary Corpuses

www.manaraa.com

66

Figure (5.11):11LR Classification Metrics using testRDD for Shamela-More,

Shamela, and Al-Bokhary Corpuses

The overall classification results of the parallel LR classifier in both situations;

large data with high dimensionality and small size dataset with small dimensionality

returned most of the relevant results than irrelevant ones. But LR noticed to perform

better with large datasets than the small one.

5.4.3 NB vs LR

We have used contrasted corpuses, in size and feature dimensionality, where

Shamela dataset as a large scale corpus and Al-Bokhary as a small dataset in size and

feature dimensionality. In general, NB has better classification results than LR when

using testRDD in prediction where NB has reach almost 99% with Shamela, Shamela-

More and Al-Bokhary corpuses. LR scores reflect the effects of the used stemming

approaches more than NB. This proves the superiority of LR and the simplicity of NB.

80.00

84.00

88.00

92.00

96.00

100.00

accuracy precision recall fmeaseure

testRDD

sham-more-no sham-more-light sham-more-stem

shamela-no shamela-light shamela-stem

bokh-no bokh-light bokh-stem

www.manaraa.com

67

NB is considered a fast classifier with low memory requirements since it has

sequential probability computations and works properly with small amounts of data,

while LR cis considered to be superior algorithm but needs large amount of data to

work appropriately and may cause over fitting estimations and spends large time with

memory complexity due to its iterative computations.

NB assumes all the features are conditionally independent. So in case of some

features dependency, it returns weak irrelevant results. LR breaks down features vector

linearly, but it works in accepted rate even if some of the variables are associated to

each other, i.e., with the existence of features dependency.

5.5 Summary

Throughout this chapter, we have covered the implementation of the proposed NB and

LR parallel classifiers and the set environment settings and conducted the experiments.

The results have been recorded, visualized and analysed. Then the parallel NB and LR

classifiers have been evaluated based on the performance and classification metrics.

Finally a comparison between the used classifiers is performed.

www.manaraa.com

Chapter 6

Conclusion

and

Future Work

www.manaraa.com

69

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Text classification of large-scale text documents is a significant research issue

in text mining and is important with the rapid growing of the Arabic text on the web.

Sequential Naïve Bayes classifier is the most used machine learning for Arabic text

classification, it is fast and easy to classify Arabic text documents with any size of

datasets. However, it takes more time when used for classifying large scale Arabic text

documents. Therefore, we proposed a parallel Naïve Bayes classifier for large-scale

Arabic text document based on MapReduce. Sequential Logistic Regression is rarely

used for text classification and it has an iterative nature for computations. So, it takes

high time and memory complexities. Therefore, a parallelized LR classifier is

proposed to overcome these shortcomings.

The proposed approach involves collecting Arabic text documents,

preprocessing of this Arabic text, design of a suitable MapReduce computing model

for parallel classification as Apache Spark platform, implementation of the parallel NB

and LR algorithms using MLlib library over Apache Spark framework.

We tested the parallel classifiers using a large scale Shamela corpus and Al-

Bokhary corpus. The experiments are performed on Apache Spark standalone cluster

consisting of 16+1 nodes as workers+driver. For evaluation purposes, we have used

the classification metrics: accuracy, precision, recall, and f-measure to evaluate the

classification of the proposed approach and we have used the classification

performance execution time, speedup, parallel efficiency and scalability to evaluate

the performance.

The results showed that the proposed parallel NB classifier approach can

significantly improves speedup up to 15x times better than the sequential approach

using the same classification algorithm and achieves accuracy up to 99%. Also, the

results showed that the proposed parallel LR classifier approach can

significantly improves speedup up to 12x times better than the sequential approach

www.manaraa.com

70

using the same classification algorithm and achieves accuracy up to 99% with large

scale datasets.

The result showed that the parallel NB classifier is faster than the parallel LR

classifier while LR can get more accurate results than parallel NB. Parallel LR and

parallel NB on apache spark need large RAMs since Apache Spark performs in-

memory processing computations. The parallel NB is considered more efficient in

which the speedup ratio increases almost linearly during increasing the number of

executors. This is unlike parallel LR where the speedup ratio increased slowly and far

away from the linear speedup.

The proposed parallel approaches can be more efficient and accurate when used

to classify large scale Arabic text documents with high dimensionality.

6.2 Future Work

There are various research directions for improvements and future

investigations. The proposed LR and NB parallel classifiers can be extended to work

in larger computer clusters that have higher memory resources with larger volume of

Arabic documents more of tens of Gigabytes. Also, applying other classification

algorithms with our approach to investigate their effectiveness and performance with

live stream data in various formats like images, videos and documents. Moreover, the

proposed approach can be applied to other domains like medical analysis, weather

prediction, and sentiment analysis to examine its generalization. It can also use live

feed data from the web like social media and air traffics as data source for automatic

classification. Additionally, the research approach can be used on different cloud-

based technologies such as big data analytics and web services where data mining

algorithms is needed over frameworks that realize MapReduce model to maximize the

system performance and give accurate results.

www.manaraa.com

References

www.manaraa.com

72

References

Abu Tair, M. M., & Baraka, R. S. (2013). Design and Evaluation of a Parallel Classifier

for Large-Scale Arabic Text. International Journal of Computer Applications,

75(3).

Abushab, M. M. (2015). Large-Scale Arabic Text Classification Using MapReduce.

(MSc Degree), Islamic University - Gaza.

Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., Khorsheed, M., & Al-Rajeh, A. (2008).

Automatic Arabic text classification.

Al-Shalabi, R., Kanaan, G., & Gharaibeh, M. (2006). Arabic text categorization using

kNN algorithm. Paper presented at the Proceedings of The 4th International

Multiconference on Computer Science and Information Technology.

Al-Shalabi, R., & Obeidat, R. (2008). Improving KNN Arabic text classification with

n-grams based document indexing. Paper presented at the Proceedings of the

Sixth International Conference on Informatics and Systems, Cairo, Egypt.

Al-Tahrawi, M. M. (2015). Arabic Text Categorization Using Logistic Regression.

International Journal of Intelligent Systems and Applications, 7(6), 71.

Al-Thubaity, A., Abanumay, N., Al-Jerayyed, S., Alrukban, A., & Mannaa, Z. (2013).

The Effect of Combining Different Feature Selection Methods on Arabic Text

Classification. Paper presented at the Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2013

14th ACIS International Conference on.

Alhutaish, R., & Omar, N. (2015). Arabic Text Classification using K-Nearest

Neighbour Algorithm. International Arab Journal of Information Technology

(IAJIT), 12(2).

Alsaleem, S. (2011). Automated Arabic Text Categorization Using SVM and NB. Int.

Arab J. e-Technol., 2(2), 124-128.

Althobaiti, M., Kruschwitz, U., & Poesio, M. (2014). AraNLP: A Java-based library

for the processing of Arabic text.

Ayedh, A., Tan, G., Alwesabi, K., & Rajeh, H. (2016). The effect of preprocessing on

arabic document categorization. Algorithms, 9(2), 27.

Bahassine, S., Kissi, M., & Madani, A. (2014). New stemming for arabic text

classification using feature selection and decision trees.

Caruana, G., Li, M., & Qi, M. (2011). A MapReduce based parallel SVM for large

scale spam filtering. Paper presented at the Fuzzy Systems and Knowledge

Discovery (FSKD), 2011 Eighth International Conference on.

Chu, C., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., & Olukotun, K. (2007).

Map-reduce for machine learning on multicore. Advances in neural

information processing systems, 19, 281.

Czech, Z. J. (2017). Introduction to Parallel Computing: Cambridge University Press.

www.manaraa.com

73

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

Dean, J., & Ghemawat, S. (2010). MapReduce: a flexible data processing tool.

Communications of the ACM, 53(1), 72-77.

Elhassan, R., & Ahmed, M. (2015). Arabic Text Classification on Full Word.

International Journal of Computer Science and Software Engineering

(IJCSSE), 4(5), 114-120.

Grishchenko, A. (2016, January 28, 2016). Spark Memory Management. from

https://0x0fff.com/spark-memory-management/

Hadoop, A. (2014). The Apache Hadoop Open Source Software for Distributed

Computing. from https://hadoop.apache.org/

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1), 10-18.

Harrag, F., El-Qawasmeh, E., & Pichappan, P. (2009). Improving Arabic text

categorization using decision trees. Paper presented at the Networked Digital

Technologies, 2009. NDT'09. First International Conference on.

Hmeidi, I., Al-shalabi, M., & Al-Ayyoub, M. (2015). A Comparative Study of

Automatic Text Categorization Methods Using Arabic Text. Paper presented at

the The International Technology Management Conference (ITMC2015).

Hmeidi, I., Hawashin, B., & El-Qawasmeh, E. (2008). Performance of KNN and SVM

classifiers on full word Arabic articles. Advanced Engineering Informatics,

22(1), 106-111.

Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: a classification

perspective: Cambridge University Press.

Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning Spark:

Lightning-Fast Big Data Analysis: " O'Reilly Media, Inc.".

Krishnaveni, G., & Sudha, T. (2016). Naïve Bayes Text Classification–A Comparison

of Event Models. Imperial Journal of Interdisciplinary Research, 3(1).

Mäkelä, M., Pauksens, K., Rostila, T. a. a., Fleming, D., Man, C., Keene, O., &

Webster, A. (2000). Clinical efficacy and safety of the orally inhaled

neuraminidase inhibitor zanamivir in the treatment of influenza: a randomized,

double-blind, placebo-controlled European study. Journal of Infection, 40(1),

42-48.

Mamoun, R., & Ahmed, M. A. (2014). A Comparative Study on Different Types of

Approaches to the Arabic text classification. Paper presented at the 1st

International Conference of Recent Trends in Information and Communication

Technologies, Universiti Teknologi Malaysia, Johor, Malaysia.

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes

text classification. Paper presented at the AAAI-98 workshop on learning for

text categorization.

www.manaraa.com

74

Moh’d Mesleh, A. (2008). Support vector machines based Arabic language text

classification system: feature selection comparative study Advances in

Computer and Information Sciences and Engineering (pp. 11-16): Springer.

Otair, M. A. (2013). Comparative analysis of Arabic stemming algorithms.

International Journal of Managing Information Technology, 5(2), 1.

Pacheco, P. (2011). An introduction to parallel programming: Elsevier.

Polamuri, S. (2017, March 14, 2017). HOW MULTINOMIAL LOGISTIC

REGRESSION MODEL WORKS IN MACHINE LEARNING. from

http://dataaspirant.com/2017/03/14/multinomial-logistic-regression-model-

works-machine-learning/

Rossum, G. v. (2015). Python Release Python 3.5.1. Retrieved 15/05/2016, from

https://www.python.org/downloads/release/python-351/

Saad, M. K., & Ashour, W. (2010). Arabic text classification using decision trees.

Paper presented at the Proceedings of the 12th international workshop on

computer science and information technologies CSIT.

Shen, P., Wang, H., Meng, Z., Yang, Z., Zhi, Z., Jin, R., & Yang, A. (2016). An

Improved Parallel Bayesian Text Classification Algorithm. Review of

Computer Engineering Studies, 3(1), 6-10.

Spark, A. (2014). Apache spark–lightning-fast cluster computing. Retrieved

23/11/2015, from http://spark.apache.org/

Spark, A. (2016). Download Apache Spark. Retrieved 26/06/2016, from

http://spark.apache.org/downloads.html

Thabtah, F., Eljinini, M., Zamzeer, M., & Hadi, W. (2009). Naïve Bayesian based on

Chi Square to categorize Arabic data. Paper presented at the proceedings of

The 11th International Business Information Management Association

Conference (IBIMA) Conference on Innovation and Knowledge Management

in Twin Track Economies, Cairo, Egypt.

Versteegh, C. H. M., & Versteegh, K. (2014). The arabic language: Edinburgh

University Press.

Wahba, K., Taha, Z. A., & England, L. (2014). Handbook for Arabic language

teaching professionals in the 21st century: Routledge.

Wahbeh, A. H., & Al-Kabi, M. (2012). Comparative Assessment of the Performance

of Three WEKA Text Classifiers Applied to Arabic Text. Abhath Al-Yarmouk:

Basic Sci. & Eng, 21(1), 15-28.

White, T. (2012). Hadoop: The definitive guide: " O'Reilly Media, Inc.".

Wu, X. (2012). Performance evaluation, prediction and visualization of parallel

systems (Vol. 4): Springer Science & Business Media.

Xu, K., Wen, C., Yuan, Q., He, X., & Tie, J. (2014). A MapReduce based Parallel

SVM for Email Classification. Journal of Networks, 9(6), 1640-1647.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:

Cluster Computing with Working Sets. HotCloud, 10(10-10), 95.

http://dataaspirant.com/2017/03/14/multinomial-logistic-regression-model-works-machine-learning/
http://dataaspirant.com/2017/03/14/multinomial-logistic-regression-model-works-machine-learning/
http://www.python.org/downloads/release/python-351/
http://spark.apache.org/
http://spark.apache.org/downloads.html

www.manaraa.com

75

Zhou, L., Wang, H., & Wang, W. (2012). Parallel implementation of classification

algorithms based on cloud computing environment. TELKOMNIKA

Indonesian Journal of Electrical Engineering, 10(5), 1087-1092.

www.manaraa.com

Appendices

www.manaraa.com

A-1

Appendix A

Source Code Implementation

A.1: Arabic Text Preprocessing using Java

Text processing applied on both corpuses (Shamela and Bokhary) in a sequential

manner using the AraNLP library. It adjusted to achieve our required text

preprocessing methods as described in Section 4.3.1.1. We can get AraNLP library

from this dropbox link https://www.dropbox.com/s/sr6pab7al9lnd28/AraNLP.zip.

The source code of this work is shown below. --

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.ArrayList;

import utilities.AraNormalizer;

import utilities.DiacriticsRemover;

import utilities.LightStemmer1;

import utilities.PunctuationsRemover;

import utilities.RootStemmer;

import utilities.SpaceTokenizer;

public class testProcess {

public static void main(String[] args) {

//read files that need to apply text preprocessing on them

 File folder = new File("folder files path");

https://www.dropbox.com/s/sr6pab7al9lnd28/AraNLP.zip

www.manaraa.com

A-2

 String pathLightStem = " folder files path "; String pathRootStem = " folder files path”;

 File[] listOfFiles = folder.listFiles();

 System.out.println(listOfFiles.length);

 int folderNum = 7;

 for (int i = 7; i < listOfFiles.length; i++) {

 File f = listOfFiles[i];

 folderNum++;

 String pth = pathLightStem + String.valueOf(folderNum) + "/";

 String pth1 = pathRootStem + String.valueOf(folderNum) + "/";

 // createBkDir(pth);

 // createBkDir(pth1);

 File[] listOfFiles1 = get_files(f.getAbsolutePath());

 // c+= listOfFiles1.length;

 System.out.println(listOfFiles1.length);

 int num = 500;

 for (int j = 500; j < 600; j++) {

 File ff = listOfFiles1[j];

 num++;

 try {

 BufferedReader br = readFile(ff.getAbsolutePath());

 processText(br, num, folderNum);

 } catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println(num);

 } } }

 private static void processText(BufferedReader br, int num, int folderNum) {

 String temp = "";

 String NormalizedRoot = "", NormalizedLight = "";

 try {

www.manaraa.com

A-3

 SpaceTokenizer tok = new SpaceTokenizer(); //remove extra spacing

 RootStemmer rs = new RootStemmer(); //get root of each token

 AraNormalizer arn = new AraNormalizer(); //normalize each token

 DiacriticsRemover dr = new DiacriticsRemover(); // remove Arabic Diacritics

 PunctuationsRemover pr = new PunctuationsRemover();

 LightStemmer1 lt = new LightStemmer1(); //get light1 stem of each token

String pathLightStem = " folder files path " + String.valueOf(folderNum) + "/"+ num + ".txt";

String pathRootStem = " folder files path " + String.valueOf(folderNum) + "/"+num + ".txt";

 String lightString = "", rootString = "";

 while ((temp = br.readLine()) != null) {

 String normalizedText = arn.normalize(temp);

 normalizedText = dr.removeDiacritics(normalizedText);

 normalizedText = pr.removePunctuations(normalizedText);

 ArrayList<String> tokenss = tok.tokenize(normalizedText);

 AraStopWords stop = new AraStopWords();

 ArrayList<String> tokens = stop.removeStopWords(tokenss);

 for (int x =0; x< tokens.size(); x++){//String token : tokens) {

 String token = tokens.get(x);

 String stem = rs.findRoot(token);

 String lstem = lt.findStem(token);

 // removing stop words=====

 rootString += stem + " ";

 lightString += lstem + " ";

 }

 NormalizedLight += lightString + "\n";

 NormalizedRoot += rootString + "\n";

 lightString = rootString = "";

 } // end while

 writeFile(NormalizedLight, pathLightStem); // save result text into text file

www.manaraa.com

A-4

 writeFile(NormalizedRoot, pathRootStem);

 } catch (IOException e) {

 e.printStackTrace();

 } }

 private static void writeFile(String normalized, String path) throws IOException {

 FileOutputStream fio4 = new FileOutputStream(new File(path));

 OutputStreamWriter osw = new OutputStreamWriter(fio4,"UTF-8");

 BufferedWriter br = new BufferedWriter(osw);

 PrintWriter pw4 = new PrintWriter(br);

 pw4.println(normalized);

 pw4.close();

 osw.close();

 fio4.close(); }

 private static BufferedReader readFile(String absolutePath)

 throws FileNotFoundException, UnsupportedEncodingException {

 File f = new File(absolutePath);

 FileInputStream fis = null;

 fis = new FileInputStream(f);

 InputStreamReader isr = null;

 isr = new InputStreamReader(fis, "UTF-8");

 return new BufferedReader(isr); }

 private static void createBkDir(String path) { //create folder for each category

 File newF = new File(path);

 if (newF.mkdir()) {

 System.out.println(path + " was created Successfully");

 } }

 private static File[] get_files(String absolutePath) { //get list of files per category

 File folder = new File(absolutePath);

 return folder.listFiles();

} }

www.manaraa.com

A-5

A.2 Hadith Matan Extraction Java Code

Bokhary corpus contains a lot of hadiths matan that are collected and extracted

manually with in-house java program. The following snippet presents this java source

code where extract mattan hadith between << >> or “ ”:

private static String extractH(ArrayList<String> hdth) {

 String hadith = " ";

 boolean isQ = false, isSt = false, isE = false;

 int start_line = 0, end_line = 0, startH = 0, endH = 0;

 for (int i = 0; i < hdth.size(); i++) {// lines

 String line = hdth.get(i);

 for (int j = 0; j < line.length(); j++) {// per line

 if (line.charAt(j) == '«' || (line.charAt(j) == '\"' && !isQ)) {// start

 isSt = true;

 start_line = i;

 startH = j + 1;

 if (line.charAt(j) == '\"')

 isQ = true;

 } else if (line.charAt(j) == '»' || (line.charAt(j) == '\"' && isQ)) {// end

 isE = true;

 end_line = i;

 endH = j - 1;

 if (line.charAt(j) == '\"')

 isQ = false; }

 if (isSt && isE) {

 if (start_line == end_line) { // start and end in the same line

 try {

 hadith += line.substring(startH, endH) + " ";

 } catch (Exception e) {

 System.out.println("= " + start_line);

 } } else if (start_line < end_line) {

 int sub = end_line - start_line;

www.manaraa.com

A-6

if (sub == 1) {

 hadith += (hdth.get(start_line)).substring(startH, hdth.get(start_line).length()) + " ";

 hadith += (hdth.get(end_line)).substring(0, endH + 1) + " ";

 } else if (sub > 1) {

for (int x = start_line; x <= end_line; x++) {

 if (x == start_line) {

 hadith+= (hdth.get(x)).substring(startH, hdth.get(x).length()) + " ";

 } else if (x == end_line) {

 hadith += (hdth.get(x)).substring(0, endH + 1) + " ";
 } else {

 hadith += (hdth.get(x)) + " "; }
 } }

 } else if (start_line > end_line) {

 int sub = start_line - end_line;

 if (sub == 1) {

 hadith += (hdth.get(end_line)).substring(0, endH + 1) + " ";

 hadith += (hdth.get(start_line)).substring(startH, hdth.get(start_line).length()) + " ";

 } else if (sub > 1) {

 for (int x = end_line; x <= start_line; x++) {

 if (x == end_line) {

 hadith += (hdth.get(x)).substring(0, endH + 1) + " ";

 } else if (x == start_line) {

 hadith += (hdth.get(x)).substring(startH, hdth.get(x).length()) + " ";

 } else {

 hadith += (hdth.get(x)) + " ";

 } } } }

 start_line = end_line = 0;

 startH = endH = 0;

 isSt = isE = false;

 } // end if and } }

 return hadith; }

www.manaraa.com

A-7

A.3 Python – Spark (pySpark) Application Code

NB and LR are the parallel classifiers covered in this research. These classifiers

are applied in parallel using Apache Spark MLlib library and Apache Spark python

API (see Sections 2.4 and 2.5) that the corpus files are imported to RDDs then went

through few steps until generate the classifier model and apply prediction.

from pyspark import SparkContext

sc = SparkContext(appName="ShamelaNBClassfication") #spark object to work with files

from time import time

file = open ("pyLog.txt", "a") #log file including execution time in milliseconds

localtime = time.asctime(time.localtime(time.time()))

file.write("Begin at: "+localtime+"\n")

from pyspark import StorageLevel #storagelevel to change memory level

t_start = time().clock()

bk1_rdd = sc.textFile("category files path ").map(lambda line: (0, line.split())) #sc read files into rdd

bk1_rdd.persist(storageLevel=StorageLevel.MEMORY_AND_DISK) #save rdd into memory and disk

bk2_rdd = sc.textFile("category files path ").map(lambda line: (1, line.split()))

bk2_rdd.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)

bkn_rdd = sc.textFile("category files path ").map(lambda line: (2, line.split()))

bkn_rdd.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)

hadith_rdd = bk1_rdd.union(bk2_rdd) #merge rdds into one.

hadith_rdd = hadith_rdd.union(bkn_rdd)

labels = hadith_rdd.map(lambda item : item[0]) #get categories labels into single rdd

features = hadith_rdd.map(lambda item : item[1]) #get categories features into single rdd

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.feature import HashingTF, IDF

prepare = time.clock()

tf = HashingTF(numFeatures=500).transform(features) #to computes term frequency using

hashing function

tf.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)

www.manaraa.com

A-8

import socket

import errno

try:

idff = IDF().fit(tf) #create idf model based on tf

except socket.error as error: # when socket connection cause error reconnect and rerun action

 if error.errno == errno.WSAECONNRESET:

 reconnect()

 retry_action()

 else:

 raise

tf_idf_rdd = idff.transform(tf)

dataRDD = labels.zip(tf_idf_rdd).map(lambda x: LabeledPoint(x[0], x[1]))

p_end = time.clock() - prepare

file.write("tfidf ready in "+format(round(p_end, 3))+" seconds")

training, test = dataRDD.randomSplit([0.7, 0.3], seed=0)

from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel

#or from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModel

model_t = time.clock()

try:

 NBmodel = NaiveBayes.train(training, 1.0) #trainning NB model

#or DTmodel = LogisticRegressionWithLBFGS.train(training, iterations=10, numClasses=8)

except socket.error as error:

 if error.errno == errno.WSAECONNRESET:

 reconnect()

 retry_action()

 else:

 raise

model_end = time.clock() - model_t

file.write("NBmodel was ready in "+format(round(model_end, 3))+" seconds")

www.manaraa.com

A-9

#apply prediction using the trained model

#predition using test rdd (expected, actual)

predictionAndLabel = test.map(lambda p: (p.label, NBmodel.predict(p.features)))

correct = predictionAndLabel.filter(lambda x: x[0] == x[1]).count() /float(test.count())

file.write("Accuracy = "+format(round(correct, 3))+"\n")

#predition using data rdd (expected, actual)

predictionAndLabels = dataRDD.map(lambda p: (p.label, NBmodel.predict(p.features)))

correct1 = predictionAndLabels.filter(lambda x: x[0] == x[1]).count() /float(dataRDD.count())

file.write("Accuracy (dataRDD) = "+format(round(correct1, 3))+"\ntest")

end = time().clock()-t_start

file.write("program ends in "+format(round(end, 3))+" seconds\n")

file.close()

file.write(predictionAndLabel.collect())

file.write("\ndataRDD")

file.write(predictionAndLabels.collect())

www.manaraa.com

A-10

A.4 (pySpark) Multiclass Evaluation Code

After training the parallel classifiers NB and LR, predictions are made with

testing data then the classification metrics are measured also in parallel using

MulticlassMetrics class in MLlib library. Below is pySpark source code for evaluation.

from pyspark import SparkContext

sc = SparkContext(appName="ShamelaNBClassfication")

import time

file = open ("MetricsLog.txt", "a")

localtime = time.asctime(time.localtime(time.time()))

file.write("Begin at: "+localtime+"\n")

#dataRDD used for prediction

dd = sc.parallelize([(0.0, 0.0), (0.0, 0.0), ...]) #prediction results

#testRDD

gg = sc.parallelize([(0.0, 0.0), (0.0, 0.0), ...]) #prediction results

from pyspark.mllib.evaluation import MulticlassMetrics

metrics = MulticlassMetrics(dd) # metrics object used for calculating the metrics

file.write("dataRDD of Merged Metrics\n")

Overall statistics

recall = metrics.recall()

precision = metrics.precision()

f1Score = metrics.fMeasure()

file.write("Summary Stats\n")

file.write("Precision = %s\n" % format(round(precision*100, 3)))

file.write("Recall = %s\n" % format(round(recall*100, 3)))

file.write("F1 Score = %s\n" % format(round(f1Score*100, 3)))

Statistics by class

labels = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]#data.map(lambda lp: lp.label).distinct().collect()

www.manaraa.com

A-11

for label in sorted(labels):

 file.write("Class %s precision = %s\n" % (label, format(round(metrics.precision(label)*100, 3))))

 file.write("Class %s recall = %s\n" % (label, format(round(metrics.recall(label)*100, 3))))

 file.write("Class %s F1 Measure = %s\n" % (label, format(round(metrics.fMeasure(label,
beta=1.0)*100, 3))))

Weighted stats

file.write("Weighted recall = %s\n" % format(round(metrics.weightedRecall*100, 3)))

file.write("Weighted precision = %s\n" % format(round(metrics.weightedPrecision*100, 3)))

file.write("Weighted F(1) Score = %s\n" % format(round(metrics.weightedFMeasure()*100, 3)))

file.write("Weighted F(0.5) Score = %s\n" %
format(round(metrics.weightedFMeasure(beta=0.5)*100, 3)))

file.write("Weighted false positive rate = %s\n" %
format(round(metrics.weightedFalsePositiveRate*100, 3)))

file.write("===================================\n")

metricss = MulticlassMetrics(gg)

file.write("testRDD of Merged Metrics\n")

Overall statistics

precisionn = metricss.precision()

recal = metricss.recall()

f1Scor = metricss.fMeasure()

file.write("Summary Stats\n")

file.write("Precision = %s\n" % format(round(precisionn*100, 3)))

file.write("Recall = %s\n" % format(round(recal*100, 3)))

file.write("F1 Score = %s\n" % format(round(f1Scor*100, 3)))

Statistics by class

labels = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]#data.map(lambda lp: lp.label).distinct().collect()

for label in sorted(labels):

 file.write("Class %s precision = %s\n" % (label, format(round(metricss.precision(label)*100, 3))))

 file.write("Class %s recall = %s\n" % (label, format(round(metricss.recall(label)*100, 3))))

 file.write("Class %s F1 Measure = %s\n" % (label, format(round(metricss.fMeasure(label,
beta=1.0)*100, 3))))

www.manaraa.com

A-12

Weighted stats

file.write("Weighted recall = %s\n" % format(round(metricss.weightedRecall*100, 3)))

file.write("Weighted precision = %s\n" % format(round(metricss.weightedPrecision*100, 3)))

file.write("Weighted F(1) Score = %s\n" % format(round(metricss.weightedFMeasure()*100, 3)))

file.write("Weighted F(0.5) Score = %s\n" % format(round(metricss.weightedFMeasure(beta=0.5)*100,
3)))

file.write("Weighted false positive rate = %s\n" %
format(round(metricss.weightedFalsePositiveRate*100, 3)))

file.write("===================================\n")

file.close()

www.manaraa.com

A-13

A.5 Python Source for Merging Files

We used custom python code to merge files per category into a single file to reduce

reading time from disk.

def merge_file(infile, outfile, separator = ""): #merge file lines into single line in new file

 print(separator.join(line.strip("\n") for line in infile), file = outfile)

def merge_files(paths, outpath, separator = ""): #merge files into single file

 with open(outpath, 'w') as outfile:

 for path in paths:

 with open(path) as infile:

 merge_file(infile, outfile, separator)

#start main code

files = []

folders = []

import os

for (path, dirnames, filenames) in os.walk("category folder files path"):

 folders.extend(os.path.join(path, name) for name in dirnames)

 files.extend(os.path.join(path, name) for name in filenames)

merge_files(files, "mergedOutputTextFilePath")

www.manaraa.com

B-1

Appendix B: Experimental Results

We have executed per experiment one to four times on each cluster 2, 4, 8, 16

nodes to observe system behavior and performance. We conducted over 300

experiments. Next we list samples of the experimental results for parallel NB and

parallel LR on Apache Spark standalone cluster.

B.1 Naïve Bayes

NB is a probabilistic algorithm commonly used for classification problems. It is

featured with fast execution and results which displayed in experimental results.

Table (B.1):12NB: 70-30 sampling - 900 feature Shamela-More light1 stemming on

a standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 10.29 98.56 98.57 98.56 98.56 98.52 98.53 98.52 98.52

2 10.72 98.47 98.48 98.47 98.47 98.44 98.45 98.44 98.44

3 10.69 98.51 98.52 98.51 98.51 98.49 98.50 98.49 98.49

4 10.51 98.52 98.53 98.52 98.52 98.51 98.52 98.51 98.51

Avg. 10.55 98.51 98.52 98.51 98.52 98.49 98.50 98.49 98.49

Table (B.2):13NB: 70-30 sampling - 900 feature Shamela-More root stemming on a

standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 8.75 99.38 99.38 99.38 99.38 99.41 99.41 99.41 99.40

2 8.76 99.46 99.46 99.46 99.45 99.45 99.45 99.45 99.45

3 8.85 99.61 99.61 99.61 99.61 99.64 99.64 99.64 99.64

4 8.87 99.52 99.52 99.52 99.51 99.50 99.50 99.50 99.50

Avg. 8.81 99.49 99.49 99.49 99.49 99.50 99.50 99.50 99.50

Table (B.3):14NB: 70-30 sampling - 900 feature Shamela light1 stemming on a

standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 9.83 99.14 99.15 99.14 99.14 98.70 98.71 98.70 98.66

2 9.93 99.12 99.12 99.12 99.11 99.26 99.26 99.26 99.26

3 9.94 99.20 99.20 99.20 99.19 98.79 98.81 98.79 98.79

www.manaraa.com

B-2

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

4 9.88 98.12 98.16 98.12 98.12 97.03 97.13 97.03 97.02

Avg. 9.89 98.89 98.91 98.89 98.89 98.45 98.48 98.45 98.43

Table (B.4):15NB: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming on

a 2 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.80 96.09 96.13 96.09 96.08 88.92 89.37 88.92 88.88

2 0.79 95.99 96.03 95.99 95.98 88.51 88.90 88.51 88.48

3 0.80 96.13 96.19 96.13 96.12 89.08 89.70 89.08 89.05

4 0.79 96.25 96.29 96.25 96.24 89.48 89.77 89.48 89.59

Avg. 0.80 96.11 96.16 96.11 96.11 89.00 89.44 89.00 89.00

Table (B.5):16NB: 70-30 sampling - 10,000 feature Al-Bokhary without stemming on

a 2 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.81 95.70 95.76 95.70 95.69 87.54 88.20 87.54 87.44

2 0.80 95.66 95.71 95.66 95.64 86.89 87.44 86.89 86.82

3 0.79 96.13 96.18 96.13 96.12 88.92 89.42 88.92 88.88

4 0.80 95.56 95.61 95.56 95.54 86.89 87.48 86.89 86.80

Avg. 0.80 95.76 95.82 95.76 95.75 87.56 88.14 87.56 87.48

Table (B.6):17NB: 70-30 sampling - 900 feature Shamela-More light1 stemming on

a 2 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 5.80 98.61 98.61 98.61 98.61 98.59 98.59 98.59 98.59

2 5.78 98.75 98.76 98.75 98.75 98.79 98.79 98.79 98.79

3 6.83 98.64 98.66 98.64 98.65 98.64 98.65 98.64 98.64

4 5.51 98.56 98.56 98.56 98.56 98.59 98.60 98.59 98.59

Avg. 5.98 98.64 98.65 98.64 98.64 98.65 98.66 98.65 98.65

www.manaraa.com

B-3

Table (B.7):18NB: 70-30 sampling - 900 feature Shamela-More root stemming on a

4 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.80 99.55 99.55 99.55 99.55 99.55 99.55 99.55 99.54

2 1.87 99.60 99.60 99.60 99.59 99.62 99.62 99.62 99.61

3 1.85 99.44 99.44 99.44 99.44 99.47 99.47 99.47 99.47

4 2.00 99.71 99.71 99.71 99.71 99.71 99.71 99.71 99.70

Avg. 1.88 99.57 99.57 99.57 99.57 99.58 99.59 99.58 99.58

Table (B.8):19NB: 70-30 sampling - 900 feature Shamela-More light1 stemming on

a 4 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 3.53 98.52 98.54 98.52 98.52 98.53 98.55 98.53 98.53

2 3.85 98.59 98.60 98.59 98.59 98.55 98.56 98.55 98.55

3 3.33 98.54 98.55 98.54 98.54 98.61 98.62 98.61 98.61

4 3.37 98.70 98.70 98.70 98.70 98.69 98.69 98.69 98.69

Avg. 3.52 98.59 98.60 98.59 98.59 98.59 98.60 98.59 98.60

Table (B.9):20NB: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming on

a 4 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.60 96.20 96.24 96.20 96.20 89.16 89.52 89.16 89.12

2 0.61 96.04 96.08 96.04 96.02 88.51 88.97 88.51 88.37

3 0.59 96.35 96.38 96.35 96.33 89.73 90.10 89.73 89.56

4 0.57 96.04 96.03 96.04 96.03 88.51 88.95 88.51 88.46

Avg. 0.59 96.16 96.18 96.16 96.14 88.98 89.39 88.98 88.88

Table (B.10):21NB: 70-30 sampling - 900 feature Shamela root stemming on an 8

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.04 97.88 98.11 97.88 97.92 97.10 97.63 97.10 97.22

2 0.94 99.52 99.52 99.52 99.52 99.18 99.20 99.18 99.18

3 0.91 98.90 98.93 98.90 98.89 98.82 98.85 98.82 98.80

4 0.91 98.45 98.48 98.45 98.43 98.01 98.09 98.01 97.99

Avg. 0.95 98.69 98.76 98.69 98.69 98.28 98.44 98.28 98.30

www.manaraa.com

B-4

Table (B.11):22NB: 70-30 sampling - 900 feature Shamela light1 stemming on an 8

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.08 98.87 98.88 98.87 98.87 98.61 98.61 98.61 98.61

2 1.18 98.31 98.36 98.31 98.31 98.24 98.28 98.24 98.24

3 1.13 99.01 99.02 99.01 99.01 98.42 98.45 98.42 98.42

4 1.11 98.12 98.16 98.12 98.13 97.40 97.49 97.40 97.42

Avg. 1.12 98.58 98.60 98.58 98.58 98.17 98.21 98.17 98.17

Table (B.12):23NB: 70-30 sampling - 900 feature Al-Bokhary root stemming on an 8

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.50 98.97 98.98 98.97 98.97 97.09 97.15 97.09 97.08

2 0.49 99.21 99.22 99.21 99.21 97.90 97.93 97.90 97.89

3 0.48 98.81 98.81 98.81 98.80 97.17 97.25 97.17 97.14

4 0.48 98.69 98.70 98.69 98.69 96.85 96.95 96.85 96.86

Avg. 0.49 98.92 98.93 98.92 98.92 97.25 97.32 97.25 97.24

Table (B.13):24NB: 70-30 sampling - 900 feature Shamela-More without stemming

on a 16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.89 98.72 98.73 98.72 98.73 98.73 98.74 98.73 98.73

2 0.86 99.31 99.31 99.31 99.31 99.30 99.30 99.30 99.30

3 0.92 99.29 99.30 99.29 99.29 99.29 99.29 99.29 99.29

4 0.86 99.24 99.24 99.24 99.24 99.20 99.20 99.20 99.20

Avg. 0.88 99.14 99.14 99.14 99.14 99.13 99.13 99.13 99.13

Table (B.14):25NB: 70-30 sampling - 900 feature Shamela without stemming on a 16

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.80 98.82 98.83 98.82 98.82 98.09 98.15 98.09 98.09

2 0.84 97.16 97.19 97.16 97.14 96.19 96.26 96.19 96.15

3 0.80 98.04 98.07 98.04 98.03 97.10 97.16 97.10 97.06

4 1.39 97.96 97.99 97.96 97.96 96.82 96.87 96.82

Avg. 0.96 98.00 98.02 98.00 97.99 97.05 97.11 97.05 72.82

www.manaraa.com

B-5

Table (B.15):26NB: 70-30 sampling - 900 feature Al-Bokhary without stemming on

a 16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.40 95.85 95.91 95.85 95.83 88.03 88.69 88.03 87.95

2 0.56 95.85 95.89 95.85 95.83 87.78 88.34 87.78 87.66

3 0.52 95.78 95.83 95.78 95.75 87.78 88.40 87.78 87.59

4 0.46 95.82 95.87 95.82 95.81 87.86 88.19 87.86 87.76

Avg. 0.49 95.82 95.87 95.82 95.80 87.86 88.40 87.86 87.74

Table (B.16):27NB: 70-30 sampling - 900 feature Shamela-More light1 stemming on

a 16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 0.68 98.66 98.67 98.66 98.66 98.66 98.67 98.66 98.66

2 0.74 98.71 98.71 98.71 98.71 98.62 98.62 98.62 98.62

3 0.76 98.55 98.57 98.55 98.55 98.56 98.58 98.56 98.56

4 0.73 99.38 98.39 98.38 98.38 98.30 98.31 98.30 98.30

Avg. 0.73 98.82 98.59 98.57 98.58 98.53 98.55 98.53 98.53

www.manaraa.com

B-6

B.2 Logistic Regression

LR is a predictive analysis has difficult computation that cost time and memory

resources but its results are more accurate.

Table (B.17):28LR: 70-30 sampling - 900 feature Shamela root stemming on a

standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 8.67 99.5 99.6 99.59 99.59 99.45 99.46 99.45 99.45

Avg. 8.67 99.59 99.6 99.59 99.59 99.45 99.46 99.45 99.45

Table (B.18):29LR: 70-30 sampling - 900 feature Shamela-More root stemming on a

standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 9.93 99.86 99.86 99.86 99.86 99.84 99.84 99.84 99.84

2 10.12 99.89 99.89 99.89 99.89 99.85 99.85 99.85 99.85

Avg. 10.03 99.87 99.87 99.87 99.87 99.85 99.85 99.85 99.85

Table (B.19):30LR: 70-30 sampling - 10,000 feature Al-Bokhary light1 stemming on

a standalone node

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.69 94.46 94.51 94.46 94.47 81.23 81.67 81.23 81.29

Avg. 1.69 94.46 94.51 94.46 94.47 81.23 81.67 81.23 81.29

Table (B.20):31LR: 70-30 sampling - 10,000 feature Al-Bokhary without stemming

on a 2 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 4.62 93.34 93.43 93.34 93.35 77.51 78.34 77.51 77.61

2 4.26 93.70 93.78 93.70 93.71 78.72 79.49 78.72 78.90

3 4.34 93.65 93.71 93.65 93.65 78.48 79.08 78.48 78.52

Avg. 4.41 93.56 93.64 93.56 93.57 78.24 78.97 78.24 78.34

www.manaraa.com

B-7

Table (B.21):32LR: 70-30 sampling - 900 feature Shamela root stemming on a 2 nodes

cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 6.30 99.20 99.23 99.20 99.20 99.28 99.30 99.28 99.28

Avg. 6.30 99.20 99.23 99.20 99.20 99.28 99.30 99.28 99.28

Table (B.22):33LR: 70-30 sampling - 900 feature Shamela light1 stemming on a 2

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 7.83 90.83 96.21 90.83 92.72 91.00 95.52 91.00 92.58

Avg. 7.83 90.83 96.21 90.83 92.72 91.00 95.52 91.00 92.58

Table (B.23):34LR: 70-30 sampling - 900 feature Shamela-More without stemming

on a 4 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 5.27 99.45 99.46 99.45 99.45 99.43 99.43 99.43 99.43

2 5.82 99.48 99.48 99.48 99.48 99.47 99.47 99.47 99.47

3 5.74 99.48 99.48 99.48 99.48 99.45 99.46 99.45 99.45

Avg. 5.61 99.47 99.47 99.47 99.47 99.45 99.45 99.45 99.45

Table (B.24):35LR: 70-30 sampling - 900 feature Shamela without stemming on a 4

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 4.98 96.14 96.41 96.14 96.09 94.92 95.36 94.92 94.83

2 5.19 96.41 96.61 96.41 96.35 95.55 95.81 95.55 95.43

3 4.87 90.96 93.07 90.96 90.96 89.29 91.37 89.29 89.08

Avg. 5.01 94.50 95.36 94.50 94.47 93.25 94.18 93.25 93.11

Table (B.25):36LR: 70-30 sampling - 10,000 feature Al-Bokhary without stemming

on a 4 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.12 93.51 93.59 93.51 93.52 77.99 78.84 77.99 78.13

2 1.11 93.44 93.51 93.44 93.51 77.75 78.46 77.75 77.83

3 1.10 93.65 93.72 93.65 93.65 78.48 79.13 78.48 78.50

www.manaraa.com

B-8

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

Avg. 1.11 93.53 93.61 93.53 93.56 78.07 78.81 78.07 78.15

Table (B.26):37LR: 70-30 sampling - 900 feature Shamela root stemming on an 8

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.59 99.28 99.30 99.28 99.28 99.37 99.39 99.37 99.37

2 1.60 99.68 99.68 99.68 99.68 99.64 99.65 99.64 99.64

3 1.58 99.57 99.58 99.57 99.57 99.37 99.38 99.37 99.37

Avg. 1.59 99.51 99.52 99.51 99.51 99.46 99.47 99.46 99.46

Table (B.27):38LR: 70-30 sampling - 900 feature Shamela light1 stemming on an 8

nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.84 89.11 94.90 89.11 91.20 89.15 93.98 89.15 90.94

2 1.84 89.19 94.02 89.19 90.75 88.59 93.44 88.59 90.24

3 1.83 90.94 94.44 90.94 91.93 90.91 93.91 90.91 91.73

Avg. 1.84 89.75 94.45 89.75 91.30 89.55 93.77 89.55 90.97

Table (B.28):39LR: 70-30 sampling - 10,000 feature Al-Bokhary root stemming on

an 8 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.09 97.85 97.87 97.85 97.85 92.72 92.89 92.72 92.74

2 1.09 98.11 98.13 98.11 98.11 93.61 93.76 93.61 93.60

3 1.10 98.00 98.01 98.00 98.00 93.20 93.43 93.20 93.23

Avg. 1.09 97.99 98.00 97.99 97.99 93.18 93.36 93.18 93.19

Table (B.29):40LR: 70-30 sampling - 900 feature Shamela-More without stemming

on a 16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 2.59 99.45 99.45 99.45 99.45 99.41 99.41 99.41 99.41

2 1.87 99.54 99.54 99.54 99.54 99.50 99.51 99.50 99.51

3 2.05 99.43 99.44 99.43 99.43 99.40 99.40 99.40 99.40

Avg. 2.17 99.47 99.48 99.47 99.47 99.44 99.44 99.44 99.44

www.manaraa.com

B-9

Table (B.30):41LR: 70-30 sampling - 900 feature Shamela without stemming on a

16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 1.85 94.66 94.99 94.66 94.57 93.19 93.58 93.19 93.01

2 2.31 96.92 97.20 96.92 96.96 95.64 96.13 95.64 95.72

3 1.84 93.08 94.88 93.08 93.42 91.74 94.01 91.74 92.15

Avg. 2.00 94.89 95.69 94.89 94.98 93.53 94.57 93.53 93.63

Table (B.31):42LR: 70-30 sampling - 10,000 feature Al-Bokhary without stemming

on a 16 nodes cluster

 dataRDD testRDD

Time (min) accuracy precision recall fmeaseure accuracy precision recall fmeaseure

1 3.29 93.75 93.79 93.75 93.74 78.80 78.23 78.80 78.75

2 1.12 93.65 93.73 93.65 93.66 78.48 79.40 78.48 78.65

3 1.13 94.01 94.10 94.01 94.01 79.69 80.60 79.69 79.76

Avg. 1.84 93.80 93.87 93.80 93.80 78.99 79.41 78.99 79.05

